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Abstract

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many

models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real

cases and because the least squares method is sensitive to these types of points, robust regression approaches

appear to be a more reliable and suitable method for addressing this problem. Additionally, in many problems,

more than one response must be analyzed; thus, multi-response problems have more applications. The robust

regression approach used in this paper is based on M-estimator methods. One of the most widely used weighting

functions used in regression estimation is Huber’s function. In multi-response surfaces, an individual estimation of

each response can cause a problem in future deductions because of separate outlier detection schemes. To address

this obstacle, a simultaneous independent multi-response iterative reweighting (SIMIR) approach is suggested.

By presenting a coincident outlier index (COI) criterion while considering a realistic number of outliers in a

multi-response problem, the performance of the proposed method is illustrated. Two well-known cases are

presented as numerical examples from the literature. The results show that the proposed approach performs better

than the classic estimation, and the proposed index shows efficiency of the proposed approach.
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Introduction
A common method of explaining and analyzing the re-

sults of experiments is response surface modeling. This

term is used for a regression equation that shows the

whole behavior of the control variables, the nuisance fac-

tors, and the response or responses. We can use the esti-

mated function to predict the response in each value of

specific controllable factors. After gathering experimental

data, a relationship between the factors (input data) and

the response or responses (output results) should be de-

fined to complete the analysis procedure. If we cannot

construct a suitable model to define the precise relation

between the input variables and the response or the re-

sponses' consequents, then the interpretations will not be

reliable. After determining an experimental design and

performing experiments, the next steps include the sta-

tistical analysis and the selection of the optimal input

variables.

One of the most common approaches of regression

coefficient estimation is the Least Squares (LS) method.

A solution given by LS determines the coefficient values

that minimize the sum of the squares of the residuals, in

other words, the sum of the square differences between

the experimental response values and those calculated

by the fitted equation.

The quality of a manufactured product is often evalu-

ated by several performance measures, which are called

quality characteristics, each of which is described by a re-

sponse variable. The values of these response variables

are affected by one or more process parameters, which

are the input variables. Often, processes with two or

more response variables operate in a conflicting way. A

group of responses often characterizes the performance

of a manufactured product. These responses are usually

correlated and measured by different measurement

scales. Therefore, a decision-maker must resolve the par-

ameter selection problem to optimize each response.

This problem is considered to be a multi-response

optimization problem, which is subject to different re-

sponse requirements.
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It is usually difficult to realize an optimal level of the

input variables that can result in values close to the ideal

or target values for all of the response variables. The

main goal of multi-response optimization is, therefore, to

find the settings of the input variables that achieve an op-

timal compromise in the response variables.

In many cases, especially in experimental results,

some of the data should be treated outliers. These

points, which may occur because of operator reading

faults or other similar factors, may have a confusing

effect on the total interpretation of the results. These

points are called outliers. A data observation or a

group of data points that are well separated from the

majority of the whole pattern of observation, in other

words, data that deviate from the general pattern, are

called outliers. However, they are avoidable during

the processing to some extent. The main concept in

robustness is the presence of outliers and, more pre-

cisely, the changes in the distribution of the data. A

common way to address outliers and to find them

when using LS is to identify the bad observations.

To detect the outliers, some graphical procedures

such as normal probability plots and numerical re-

gression diagnostics have been proposed. These pro-

cedures are defined in Weisberg (1985). Wisnowskia

et al. (2001) studied the analysis of multiple outlier

detection procedures for a linear regression model.

Monte Carlo simulation is used to compare different

approaches, and the performances and limitations of

each method are discussed. Outlier detection in

multivariate problems is not simple to understand; to

describe this problem, simple visual methods can be

applied. Fernandez Pierna et al. (2002) compared this

type of method, called the convex hull method, with

classical techniques and robust methods.

The concept of outlier data is qualitative in the sense

that it is not the same as incorrect data but rather refers

to data that are different from the majority. Often, the

presence of outlier data illustrates the existence of an

unexpected phenomenon at the start of experimentation

but that can be explained, possibly from experimental

causes. A problem that we often encountered in the ap-

plication of regression is the presence of an outlier or

outliers in the data. Outliers can be generated by a sim-

ple operational mistake, a small sample size, or other

factors. Even one outlying observation can destroy an LS

estimation, resulting in parameter estimates that do not

provide useful information for the majority of the data.

Robust regression analysis was developed to improve LS

estimation in the presence of outliers and to provide

additional information about valid observations. The pri-

mary purpose of robust regression analysis is to fit a

model that represents the information that is in the ma-

jority of the data.

To address this obstacle, some robust approaches were

proposed by different authors. Robust regression methods

were introduced to address the above-mentioned problems.

Ample (Fernandez Pierna et al. 2002) introduced robust-

ness and computational approaches that include Huber

(1981) robust statistics and different estimation algorithms.

One common robust estimation approach is the M-

estimator, which is based on a maximum likelihood estima-

tion (MLE). LS was derived by this type of estimation and

considers a special residuals function. The main idea of M-

Table 1 A brief review of single and multi-response robust regression in the literature

Robust single response
(using M-estimators)

Robust multi-response

Independent responses Dependent responses
(robust multivariate)

Individuals Simultaneous

Hampel (1971) ✓

Huber (1981) ✓

Cummins and Andrews (1995) ✓

Morgenthaler and Schumacher (1999) ✓

Hund et al. (2002) ✓

Wiens and Wu (2010) ✓

Koksoy (2006) ✓

Koksoy (2008) ✓

Quesada and Del Castillo (2004) ✓

Daszykowski et al. (2007) ✓

Rousseeuw et al. (2004) ✓

Our research ✓
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estimators is to replace the squared residuals by another

function. The M-estimator works by an iterative procedure.

As a consequence, several authors (e.g., Cummins and

Andrews 1995) have called this estimator iteratively

reweighted least squares, or the IRLS method. Additionally

in our case, to estimate the regression coefficients, the itera-

tive weighting method can be applied to estimate robust

coefficients. One M-estimator function is from Huber

(1981), which has become increasingly popular. Since then,

more robust approaches have been discussed by investiga-

tors. However since M-estimators are simple to understand

and considering that recent methods are sometimes so sen-

sitive that they wrongly identify good points as outliers

(Hund et al. 2002), we chose to use these type of estimators.

Maronna et al. (2006) explained the most recent robust re-

gression algorithms.

Morgenthaler and Schumacher (1999) discussed robust

response surfaces in chemistry based on the design of

experiments. Hund et al. (2002) presented various

methods of outlier detection and evaluated robustness

tests with different experimental designs. Robust regres-

sion methods and reconstruction experimental design

methods have been compared. Wiens and Wu (2010)

proposed a comparative study of M-estimators and

presented a design that is more optimal compared with

possible regression models.

In multi-response problems, the first step is the ac-

curate determination of the regression coefficient be-

cause contamination and outlier data can have a

negative effect on the models. The robustness concept

in multi-responses has been presented by different au-

thors; however, robust design was developed by

Taguchi (1986, 1987). This approach is often used in

process improvement project, to redesign processes

for the purpose of increasing customer satisfaction by

improving operational performances. Usually, the

model parameters are estimated by LS in robust de-

sign. This methodology specifically utilizes both ex-

perimentation and optimization methods to determine

the system's optimum operating conditions. Koksoy

(2008, 2006) presented MSE as a robust design criter-

ion in multi-response problems. Additionally, genetic

algorithms and generalized reduced gradients method

were used in their solution stage. In the mentioned

studies, the general framework for multivariate prob-

lems in which data are collected from a combined

array has been presented. For example, Quesada and

Del Castillo (2004) proposed a dual response ap-

proach to multivariate robust parameter designs.

There are also several papers that consider correlations

between responses, allowing the variance-covariance

structure of the multiple responses to be accounted for.

In this case, some multivariate techniques can be applied

to these problems. Daszykowski et al. (2007) reviewed

robust models and both univariate and multivariate out-

liers, and the effects of data analysis have been studied.

One of the most efficient and useful robust multivariate

regressions is the minimum covariance determinant,

which was proposed by Rousseeuw et al. (2004).

In multi-response problems, robust regression ap-

proaches can be used to decrease the effects of contam-

inations and to focus outliers. In this paper, it is

assumed that there is no correlation between responses;

Table 2 Experimental data of the tire tread compound

problem

Experiment number x1 x2 x3 y1 y2 y3 y4

1 −1 −1 +1 102 900 470 67.5

2 +1 −1 −1 120 860 410 65

3 −1 +1 −1 117 800 570 77.5

4 +1 +1 +1 198 2,294 240 74.5

5 −1 −1 −1 103 490 640 62.5

6 +1 −1 +1 132 1,289 270 67

7 −1 +1 +1 132 1,270 410 78

8 +1 +1 −1 139 1,090 380 70

9 −1.633 0 0 102 770 590 76

10 +1.633 0 0 154 1,690 260 70

11 0 −1.633 0 96 700 520 63

12 0 +1.633 0 163 1,540 380 75

13 0 0 −1.633 116 2,184 520 65

14 0 0 +1.633 153 1,784 290 71

15 0 0 0 133 1,300 380 70

16 0 0 0 133 1,300 380 68.5

17 0 0 0 140 1,145 430 68

18 0 0 0 142 1,090 430 68

19 0 0 0 145 1,260 390 69

20 0 0 0 142 1,344 390 70

Table 3 Summary of the least squares regression

coefficients for each response in the first example

Coefficients ŷ1 ŷ2 ŷ3 ŷ4

x1 16.49 268.15 −99.67 −1.41

x2 17.88 246.5 −31.4 4.32

x3 10.91 139.48 −73.92 1.63

x21 −4.01 −83.55 7.93 1.56

x22 −3.45 −124.79 17.31 0.06

x23 −1.57 199.17 0.43 −0.32

x1x2 5.13 69.38 8.75 −1.63

x1x3 7.13 94.13 6.25 0.13

x2x3 7.88 104.38 1.25 −0.25

Intercept 139.12 1261.11 400.38 68.91
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a similar assumption is made in other studies, such as

Koksoy (2008). However, by considering each response

and using univariate M-estimators to estimate the coef-

ficients, a problem could occur, and outlier detection is

required to consider all of the responses simultaneously.

An outlier appearance in only one response cannot be

considered a wrong observation while the other re-

sponses are considered to contain normal behavior. If

we consider the responses individually, an experiment

could treat an observation as outlier data, while in an

iterative procedure, that point would be down-weighted

more than it is appropriate. Considering all of the re-

sponses simultaneously leads to calculating the real

number of outliers in a multi-response problem. In this

paper, we suppose that the outlier data will occur be-

cause of a mistake in the experimentation, but not in

the recording of the data. Hence considering one re-

sponse as an outlier while considering others not to be

Table 4 Scaled residuals of responses in the first iteration for the tire tread compound problem

Experiment number R1 R2 R3 R4 Sum of absolute value of residuals

1 1.284007 0.604262 −0.97866 0.050079 2.917006

2 1.608107 −0.85258 −0.53883 0.674586 3.674095

3 0.563234 −0.83752 0.372694 0.891048 2.664497

4 0.612035 0.476129 0.181098 1.11425 2.383513

5 −0.47289 −1.4899 −0.49364 −1.05129 3.507725

6 −0.42409 −0.17625 −0.68524 −0.82808 2.113666

7 −1.46897 −0.1612 0.226282 −0.61162 2.468066

8 −1.14487 −1.61804 0.666114 0.012886 3.441902

9 0.123999 0.67264 0.386427 0.471895 1.654961

10 −0.33271 0.848008 0.082396 −0.56633 1.829443

11 −1.1557 0.691078 1.502795 0.737001 4.086571

12 0.946989 0.82957 −1.03398 −0.83144 3.641976

13 −0.27294 2.456887 −0.15226 −0.29297 3.175049

14 0.064229 −0.93624 0.621073 0.198524 1.820065

15 −1.4959 0.154146 −1.38046 0.811253 3.841755

16 −1.4959 0.154146 −1.38046 −0.30476 3.335263

17 0.215309 −0.46058 2.005573 −0.67677 3.35823

18 0.704225 −0.67871 2.005573 −0.67677 4.065276

19 1.4376 −0.00449 −0.70325 0.067244 2.212588

20 0.704225 0.32865 −0.70325 0.811253 2.547379

Table 5 Actual, individual robust, and SIMIR regression coefficient estimations for the tire tread compound problem

ŷ1 ŷ2 ŷ3 ŷ4

Actual Robust
individual

SIMIR Actual Robust
individual

SIMIR Actual Robust
individual

SIMIR Actual Robust
individual

SIMIR

x1 14.77 17.17 16.75 280.27 302.80 276.86 −62.32 −89.92 −89.69 −1.41 −1.35 −1.57

x2 19.59 17.79 17.13 258.6 248.54 242.62 −23.21 −31.37 −33.70 4.32 3.97 3.82

x3 12.62 12.25 12.60 227.3 314.15 291.86 −45.45 −74.16 −75.05 1.63 1.68 1.42

x21 −5 −4.52 −4.25 −10.95 −27.36 −23.64 5.24 12.05 7.18 1.56 1.54 1.64

x22 −4.43 −3.85 −3.63 −52.2 −62.86 −53.89 7.33 17.42 16.68 0.06 0.11 0.16

x23 −2.56 −2.07 −2.40 51.02 0.025 45.04 2.43 4.52 0.99 −0.32 −0.33 −0.13

x1x2 6.16 5.18 4.90 163.26 62.65 21.04 4.07 11.44 10.20 −1.63 −0.79 −0.57

x1x3 8.16 7.22 6.83 73.93 85.13 128.98 2.34 7.91 8.97 0.13 −0.21 0.14

x2x3 6.83 6.81 7.35 84.18 52.89 62.07 0.58 3.94 2.27 −0.25 0.58 0.82

Intercept 141.33 139.16 139.32 1241.7 1265.49 1225.18 396.04 391.21 403.17 68.91 68.85 68.74
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contaminated is not rational. A brief review on the lit-

erature is given in Table 1, as follows:

To the best of our knowledge, there are a few

studies on multi-response robust regression, and this

paper focuses on the multi-response robust regres-

sion that considers the response residuals simultan-

eously. To estimate the regression coefficients in the

multi-response problem, we propose a procedure in

which we apply a simultaneous independent multi-

response iterative reweighting procedure and change

the M-estimator weighting function; a more precise

estimation of each response can be obtained. By con-

sidering this procedure, a new criterion is proposed

named the coincident outlier index (COI), and the

performance of this procedure is analyzed.

This paper is organized as follows. ‘Using M-estimators

for robust estimation of regression coefficients’ section

presents the robust M-estimator procedure and the

modification of the response surface by an iterative

weighting procedure. The proposed method for the

multi-response problem is defined in ‘Robust simultan-

eous estimation of multi-response problem’ section. To

illustrate the proposed method, a numerical example is

presented before the ‘Conclusions’ section. Finally, the

last section provides the conclusions of this paper.

Using M-estimators for robust estimation of
regression coefficients
The M-estimator proposed by Huber (1981) is the gen-

eralized form of the (MLEs). This part is extracted from

Table 6 SE of the estimation of each regression coefficient in the least squares, individual robust and SIMIR

approaches

ŷ1 ŷ2 ŷ3 ŷ4

LS Robust
individual

SIMIR LS Robust
individual

SIMIR LS Robust
individual

SIMIR LS Robust
individual

SIMIR

x1 2.9584 5.79 3.93 146.89 507.94 11.61 1,395.02 762.00 749.18 0 0.0036 0.025

x2 2.9241 3.20 6.05 146.41 101.17 255.27 67.07 66.62 110.22 0 0.12 0.25

x3 2.9241 0.13 0.00 7,712.35 7,544.56 4,168.97 810.54 824.36 876.42 0 0.002 0.044

x21 0.9801 0.22 0.55 5,270.76 269.58 161.11 7.23 46.46 3.79 0 0.0004 0.0064

x22 0.9604 0.33 0.63 5,269.30 113.79 2.88 99.60 101.91 87.56 0 0.0025 0.01

x23 0.9801 0.23 0.02 21,948.42 2,600.46 35.72 4 4.40 2.05 0 0.0001 0.036

x1x2 1.0609 0.95 1.57 8,813.45 10,122.05 20,225.64 21.90 54.37 37.59 0 0.70 1.12

x1x3 1.0609 0.88 1.75 408.04 125.47 3,030.72 15.28 31.05 43.96 0 0.115 0.0001

x2x3 1.1025 0.00 0.27 408.04 978.48 488.47 0.44 11.31 2.87 0 0.688 1.14

Intercept 4.8841 4.67 4.03 376.74 566.38 272.60 18.83 23.30 50.97 0 0.003 0.028

SSE 19.8356 16.43 18.83 50,500.43 22,929.92 28,653.03 2,439.95 1,925.83 1,964.64 0 1.645 2.66

SSE, sum of squared error.
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Figure 1 Evaluation of the sum of squared errors of proposed approach and classical approaches for the first example.
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Maronna et al. (2006). The M-estimator is the solution

of Equation (1), as follows:

⌢

θ ¼ arg min
θ

X

n

i¼1

ρ xi; θð Þ ð1Þ

where ρ is a function with specific properties. Supposed

that f is a density function and ρ = −log f, where f is a

density function, then
⌢

θ will be introduced as the MLE

of the parameter. There are several ρ functions. One

common ρ function is Huber (1981). This function is

well-defined in Equation (2):

ρ
k
xð Þ¼

(

x2 if xj j ≤ k

2k xj j−k
2

if jxj>k
ð2Þ

By considering this function and by defining ψ = ρ′

and a weighting function by Equation (3), the iterative

algorithm to estimate the unknown parameter can be

defined.

W xð Þ ¼
ψ xð Þ=x if x ≠ 0
ψ′ xð Þ if x ¼ 0

�

ð3Þ

M-estimates for estimating regression coefficients are

developed in the same way as defined in previous part.

Equation (4) should be considered, and the coefficients

can be obtained by solving following equation:

X

n

i¼1

ψ
ri β̂
� �

σ̂

0

@

1

Axi ¼ 0 ð4Þ

The ⌢

σ in Equation (4) can also be estimated individu-

ally by Equation (5), as follows, or can be solved simul-

taneously in Equation (4). ri is a residual of the response.

⌢σ ¼
1

0:675
Medi rij jri≠ 0ð Þ ð5Þ

To make the estimation procedure invariant with re-

spect to the scale of the residuals, the ris are divided by

‘s’. The value of ‘s’ is often taken to be equal to 1.4826

MAD, where MAD is the median of the absolute devia-

tions of the residuals from their median, and 1.4826 is a

Table 7 Experimental data of the elastic element of the

force transducer problem

Experiment number x1 x2 x3 z1 z2 y1 y2

1 −1 −1 −1 −1 1 1.810 1.10

2 −1 −1 −1 1 −1 1.690 1.11

3 −1 −1 1 −1 −1 1.900 1.07

4 −1 −1 1 1 1 1.780 1.07

5 −1 1 −1 −1 −1 1.800 1.47

6 −1 1 −1 1 1 1.630 1.18

7 −1 1 1 −1 1 1.920 1.41

8 −1 1 1 1 −1 1.780 1.58

9 1 −1 −1 −1 −1 1.360 1.57

10 1 −1 −1 1 1 1.220 2.03

11 1 −1 1 −1 1 1.480 1.38

12 1 −1 1 1 −1 1.440 1.68

13 1 1 −1 −1 1 0.693 3.37

14 1 1 −1 1 −1 0.616 3.75

15 1 1 1 −1 −1 0.950 2.81

16 1 1 1 1 1 0.817 2.83

17 −1 0 0 0 0 1.790 1.24

18 1 0 0 0 0 1.030 2.46

19 0 −1 0 0 0 1.530 1.23

20 0 1 0 0 0 1.220 1.73

21 0 0 −1 0 0 1.300 1.63

22 0 0 1 0 0 1.440 1.67

23 0 0 0 0 0 1.380 1.73

24 0 0 0 0 0 1.390 1.74

25 0 0 0 0 0 1.400 1.74

Table 8 Summary of the least squares regression

coefficient for each response in the second example

Coefficients ŷ 1 ŷ 2

x1 −0.36 0.59

x2 −0.15 0.43

x3 0.07 −0.09

z1 −0.05 0.06

z2 −0.01 −0.04

x21 0.02 0.11

x22 0.2 −0.25

x23 0 −0.08

z21 0 0.33

x1x2 −0.14 0.3

x1x3 0.02 −0.14

x1z1 0.01 0.08

x1z2 0 0.01

x2x3 0.01 −0.033

x2z1 0 −0.03

x2z2 0 −0.06

x3z1 0 0

x3z2 0 −0.01

z1z2 0 −0.08

Intercept 1.39 1.73
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bias adjustment for the standard deviation under the

normal distribution.

An iterative reweighting method can be defined as fol-

lows: First, compute an initial estimate β0 and compute
⌢σ from Equation (5). After that, for k = 0, 1, 2, … :

First, Compute an initial estimate β0 and compute ⌢σ

from Equation (5). After that, For k = 0, 1, 2, … :

(a)Given
⌢

βk , for i = 1, . . . , n, compute ri;k ¼ yi−X
0

i

⌢

βk
and wi;k ¼ W ri;k=

⌢

σ
� �

.

(b)Compute
⌢

βkþ1 by solving the following:

X

n

i¼1

wi;kX i yi−X
0

i

⌢

βk

� �

¼ 0 ð6Þ

Finally, thealgorithmstopswhenmax ri;k−ri;kþ1

�

�

�

�

� �

=
⌢

σ < ε

This algorithm converges if W(x) is non-increasing for x

>0 (Maronna et al. 2006). If ψ is monotone, because the so-

lution is essentially unique, the choice of the starting point

influences the number of iterations but not the final result.

This procedure is called (IRWLS).

The procedure is as follows: compute the first coefficients

of the regression model, then compute the residuals and

weights, and finally compute the new coefficients using

Equation (6). This procedure can be repeated because the

values of the coefficients and the values of the residuals and

weights are different; as a result, this procedure can be re-

peated until a good solution is obtained. The procedure ter-

minates when the change in the estimation from one

iteration to the next is sufficiently small. The estimators of

coefficients based on the LS method are basically unbiased;

the robust estimators like LS methods are basically un-

biased too.

Robust simultaneous estimation of
multi-response problem
In a multi-response problem, similar to a single response

problem, robust estimation of the regression model is an

important issue. A simple approach to estimating the re-

gression models in multi-response problems is to con-

sider the responses individually and to estimate the

solution to each problem by the robust M-estimator ap-

proach. However, this approach could cause some prob-

lems. Assume in one experiment that a specific response

residual appears to be an outlier. However, other re-

sponses do not show any signs of being unacceptable

data for that specific experiment. The outlier data could

occur because of a fault in the experimentation. It is not

rational to say, then, whether one experiment's result is

an outlier for one response because it may not be un-

acceptable data for the other responses. From this type

of deduction, a large amount of the experiment's results

could become outliers, and for each response, some

points will be assumed to be outliers by mistake. Thus, as-

suming independence between responses, a simultaneous

independent multi-response iterative reweighting (SIMIR)

approach is proposed to solve this problem. In this ap-

proach, based on M-estimators, some changes are applied

in the procedure of weighting functions to estimate the

coefficients of the model. The weighting function pro-

posed in this method, down-weights the residuals by con-

sidering each response of the multi-response problem in

each iteration, simultaneously. We have j responses in this

problem and i experiments. The variable r(i)j defines the

residual for the ith replicate of the jth response. The pro-

posed weighting function is given in Equation (7):

wi ¼ 1

wi ¼
c

X

l

j¼1

rðiÞj

�

�

�

�

�

�

�

�

�

�

if ∀ rðiÞj

�

�

�

�

�

� < c

if ∃ rðiÞj

�

�

�

�

�

� > c

;

8

>

>

<

>

>

:

ð7Þ

Table 9 Scaled residuals of two responses in the first

iteration for proposed example

Experiment
number

R1 R2 Sum of absolute
value of residuals

1 −0.72 −0.172 0.894

2 −0.72 −0.172 0.894

3 −0.33 −0.892 1.229

4 −0.33 −0.892 1.229

5 −0.70 1.006 1.711

6 −0.70 1.006 1.711

7 −0.319 0.286 0.605

8 −0.319 0.286 0.605

9 0.319 −0.286 0.605

10 0.319 −0.286 0.605

11 0.704 −1.006 1.711

12 0.704 −1.006 1.711

13 0.337 0.892 1.229

14 0.337 0.892 1.229

15 0.722 0.172 0.894

16 0.722 0.172 0.894

17 4.165 −0.459 4.624

18 −4.165 0.459 4.624

19 0.072 4.716 4.788

20 −0.072 −4.716 4.788

21 1.540 −2.880 4.420

22 −1.540 2.880 4.420

23 −2.166 −0.166 2.333

24 0 0.083 0.083

25 2.166 0.083 2.250
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The proposed pseudo code is as follows:

1. Compute the actual values of the responses in each

experiment by performing all of the experiments

2. Estimate the regression coefficients of the initial

regression model by applying the proper method.

While ri;k−ri;kþ1

�

�

�

�

� �

=
⌢

σ < ε Do (ε is determined by

the analyzer).

3. Calculate the residuals of each response in all of the

experiments

4. Compute the
⌢

σ by Equation (5).

5. If all r(i)j are smaller than the threshold determined

in the Huber M-estimator method, then dedicate the

weight to be equal to 1 for the residuals in this

iteration and go to step (7); else, go to step (6).

6. Down weight the residuals by considering the values

of the residuals in all of the responses by a function

in Equation (7).

7. Estimate the regression coefficients by solving

Equation (6).

The performance of the proposed method is presented

by a numerical example in the next section. By applying

the SIMIR procedure, the squared errors (SE) of the esti-

mated parameters, which are regression coefficients, are

reduced compared to those of the least squares estima-

tion of each response; however, to some extent, this

strategy is not as precise as the robust individual estima-

tion. One important problem in multi-response prob-

lems is the number of real outliers.

The SE criterion is computed in Equation (8):

SE ¼ θ−θ̂
� �2

ð8Þ

Individually, residuals computed for one response

could not be outliers in the whole multi-response prob-

lem. To detect the outliers in a multi-response problem,

it is not correct to mention the outliers in each individ-

ual response. We present the COI to detect the real

number of outliers in a robust estimation of the regres-

sion coefficients in a multi-response problem. This index

can be computed by this procedure, for which we define

the threshold by considering the suggested C (defined in

Equation (7)) in the Huber procedure and by consider-

ing scaled residuals. If we consider the number of re-

sponses as n, then the proposed threshold is defined as

T ¼ n
2

� 	

þ 1
� �

� C . If the sum of the residuals is greater

than this threshold, then that experiment is treated as an

outlier. Thus, the COI is equal to the number of points

Table 10 Actual, individual robust, and SIMIR approach for regression coefficient estimation for the proposed problem

ŷ1 ŷ2

LS Actual Robust individual SIMIR LS Actual robust Individual SIMIR

x1 −0.36 −0.36 −0.35 −0.35 0.59 0.58 0.585 0.585

x2 −0.15 −0.15 −0.15 −0.15 0.43 0.43 0.43 0.43

x3 0.07 0.07 0.07 0.07 −0.09 −0.1 −0.09 −0.09

z1 −0.05 −0.05 −0.05 −0.05 0.06 0.06 0.06 0.06

z2 −0.01 −0.01 −0.01 −0.01 −0.04 −0.04 −0.04 −0.04

x21 0.02 0.02 0.02 0.02 0.11 0.35 0.21 0.21

x22 0.2 −0.01 0.09 0.09 −0.25 −0.2 −0.22 −0.22

x23 0 −0.02 −0.01 −0.01 −0.08 0 −0.07 −0.07

z21 0 0.05 0.02 0.02 0.33 0 0.15 0.15

x1x2 −0.14 −0.14 −0.14 −0.14 0.3 0.3 0.3 0.3

x1x3 0.02 0.02 0.02 0.02 −0.14 −0.14 −0.14 −0.14

x1z1 0.01 0.01 0.01 0.01 0.08 0.07 0.08 0.08

x1z2 0 0 0 0 0.01 0.01 0.01 0.01

x2x3 0.01 0.01 0.01 0.01 −0.033 −0.033 −0.033 −0.033

x2z1 0 0 0 0 −0.03 −0.03 −0.03 −0.03

x2z2 0 0 0 0 −0.06 −0.06 −0.06 −0.06

x3z1 0 0 0 0 0 0 0 0

x3z2 0 0 0 0 −0.01 0 0 0

z1z2 0 0 0 0 −0.08 0 0 0

Intercept 1.39 1.39 1.39 1.39 1.73 1.74 1.73 1.73
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that are greater than T. Equation (9) defines the pro-

posed COI, as follows:

COI ¼
X

N

i¼1

zij for each j ¼ 1;…; l

zij ¼
1

0

if
X

4

j¼1

rij > T for each i

if
X

4

j¼1

rij < T for each i

8

>

>

>

>

<

>

>

>

>

:

ð9Þ

where N is the number of experiments.

Numerical example
In this section, the efficiency of our proposed approach

compared with existing approaches is illustrated for two

cases. In case one, the number of coinciding outliers dif-

fers from the number of outliers that were detected by

an individual procedure. In the second case, the previous

experiments contain most of the outliers because of a

true fault by the experimenter. The number of coinci-

ding outliers and the outliers that are detected individu-

ally does not differ significantly in this case.

Case 1. tire tread compound problem

In this section, we illustrate the proposed method using

the well-known problem ‘tire tread compound problem’,

which was originally presented by Derringer and Suich

(1980). In this model, three main chemical materials,

such as silica (x1), silane (x2), and sulfur (x3), and four re-

sponses are assumed. The experimental data results are

given in Table 2.

As a first step, we attempt to find a primary regression

model with four responses. A central composite design

(CCD) with six center points is applied to describe the

model. All of the controllable variables are − 1.63 ≤ xi ≤

1.63, i = 1, 2, 3. The regression coefficients that are ob-

tained by the least squares estimation method and

according to the CCD are given in Table 3, as follows:

The scaled residuals of this multi-response problem

are reported in Table 4, as follows:

For the first response, the residuals obtained by the ex-

periments numbered 2, 7, 15, 16, and 19 appear to be

outliers, and for the second response residuals, those

numbered 5, 8, and 13 appear to be outliers. For the third

Table 11 SE of the estimation of regression coefficients in LS, robust individual, and SIMIR methods

ŷ1 ŷ2

LS Robust individual SIMIR LS robust Individual SIMIR

x1 0.0001 0 0 0.0001 0.000025 0.000025

x2 0 0 0 0 0 0

x3 0 0 0 0.0001 0.0001 0.0001

z1 0 0 0 0 0 0

z2 0 0 0 0 0 0

x21 0 0 0 0.057 0.019 0.019

x22 0.0441 0.01 0.01 0.0025 0.0004 0.0004

x23 0.0004 0.0001 0.0001 0.006 0.0049 0.004

z21 0.0025 0.0009 0.0009 0.108 0.022 0.022

x1x2 0 0 0 0 0 0

x1x3 0 0 0 0 0 0

x1z1 0 0 0 0 0.0001 0.0001

x1z2 0 0 0 0 0 0

x2x3 0 0 0 0 0 0

x2z1 0 0 0 0 0 0

x2z2 0 0 0 0 0 0

x3z1 0 0 0 0 0 0

x3z2 0 0 0 0.0001 0 0

z1z2 0 0 0 0.0064 0 0

Intercept 0 0 0 0.0001 0.0001 0.0001

SSE 0.0471 0.011 0.011 0.1823 0.047 0.047
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response residuals, those numbered 11, 17, and 18 appear

to be outliers. The fourth model does not contain a re-

sidual that implies an outlier. By omitting the values of

the implied outliers, actual regression models can be

obtained by a least squares method because least square is

the most efficient method in the absence of outlier data.

This method is considered to be the actual result in Table 5.

In addition, to obtain the robust regression models by two

different approaches, the robust individual regression ap-

proach and the SIMIR approach are applied and can be

compared by considering the SE criteria.

First, we consider each response individually and apply

the M-estimator procedure to each response. The con-

stant C in this example is assumed to be 1.37. Finally,

the SIMIR procedure is applied to the data. Coefficients

obtained by actual, robust individual and SIMIR proce-

dures are given in Table 5.

Then, to evaluate the procedures mentioned (actual,

individual robust, and SIMIR approaches), the SE of

these estimated parameters are computed using Equation

(8), and the results are reported in Table 6. In Equation

(8), it is assumed that the value of θ is the regression co-

efficient in the actual method, and θ̂ is the regression co-

efficient in the considered method (actual, individual

robust, and SIMIR approaches).

Additionally, the evaluation is given in Figure 1, as

follows:

A comparison among the three approaches by consider-

ing the sum of squared errors (SSE) is computed in Table 6

and illustrated in Figure 1. In this figure, for the first three

responses, the scaled values of the SSE are given.

The results show that the robust individual regression

estimation is more precise than that of the least squares

estimation or the proposed SIMIR approach, but the co-

incident outlier index that was presented in the previous

section is more reliable and realistic. Moreover, the

results state that in the case with an absence of outliers,

LS performs better than both the robust individual and

the SIMIR procedures. In this example, if we want to

count the outliers as a multi-response problem individu-

ally, the results would be 11 experiments. However, by

the proposed COI index, the real number of the multi-

response problem outliers is 2, and it would be more

rational that in 20 experiments, almost 10% of the exper-

iments result in outliers.

Case 2. elastic element of a force transducer problem

We provide another example to illustrate the efficiency

of the proposed method. The following example was

presented as a case study in Romano et al. (2004), in

which the problem was about the elastic element of a

force transducer. This example involves a combined

array design with three control (x) and two noise (z) var-

iables. The control factors are the three parameters that

describe the element configuration, namely the lozenge

angle (x1), the bore diameter (x2), and the half-length of

the vertical segment (x3). Noise factors are the deviation

of the lozenge angle from its nominal value (z1) and the
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deviation of the bore diameter from its nominal value

(z2). These internal noise factors are undeniably inde-

pendent. The two indicators, namely the non-linearity

(y1) and the hysteresis (y2), define the responses. Table 7

displays the data from this experiment.

First, we need to find a primary regression model for

the two responses. All of the controllable variables are −

1 ≤ xi ≤ 1, i = 1, 2. The regression coefficients that were

obtained by the least squares estimation method are

given in Table 8, as follows:

The scaled residuals of this multi-response problem

are reported in Table 9, as follows:

Consequently, for the first response, outliers appear

with the residuals obtained by the experiments, num-

bered 17, 18, 21, 22, 23 and 25; for second response re-

siduals, they are numbered 19, 20, 21 and 22. By omitting

these values, the actual regression models can be

obtained. To obtain the robust regression models, two

different approaches are applied, and these two ap-

proaches are compared by considering the SE criteria.

First, we consider each response individually and apply

the M-estimator procedure to each response. The con-

stant C in this example is assumed to be 1.37. Thus,

three groups of coefficients are reported in Table 10.

To evaluate the three procedures, the proposed SE cri-

terion are calculated, and the results are given in Table 11

as follows:

In addition, to provide more illustration, Figure 2 is

given as follows:

Similar to the previous example, our results showed

that the robust individual regression estimation performs

better, but not significantly better than the least squares

method; the SIMIR approach was also considered, but

the COI is more realistic and accurate. In this example,

if we want to count the outliers in a multi-response

problem individually, the results would consist of eight

experiments. However, by the proposed COI index, the

real number of outliers in the multi-response problem

is six.

Therefore, by considering these two examples, the

number of detected outliers calculated by both the clas-

sical method and the SIMIR proposed approach is

shown in Figure 3, as follows:

Conclusions
As mentioned in the previous sections, a robust simul-

taneous estimation of regression coefficients in the

multi-response problem in the case in which contami-

nated data exists was presented in this paper. In

addition, the results showed that the proposed approach

would consider a number of points to be real outliers in

the multi-response problem, although individual robust

regression shows some other points as outliers. Thus, an

aggregative approach in the weighting function was

proposed, in which all of the responses were surveyed.

The SIMIR approach performed better than the classic

method for detecting outliers and estimating regression

coefficients. Additionally, our results show that the pro-

posed approach would provide a better COI index than

the classical approach for outlier detection. For future

research, other robust regression approaches can be

studied. In addition, considering a problem with corre-

lated responses can be another aspect of related future

research.
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