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In the real problems, there are many cases which have correlated quality characteristics
so multiple response optimization can be more realistic if we can consider correlation
structure of responses. In this study we propose a new method which uses multivariate
normal probability to find the optimal treatment in an experimental design. Moreover,
a heuristic method is used to find better factors’ level in all possible combinations in
the designs with large number of controllable factors and their levels. Some simulated
numerical examples and a real case were studied by the proposed approach and the
comparison of the results with previous methods show efficiency of the proposed method.
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1. Introduction

Multiple response optimization can be divided into two general categories: independent

responses systems and correlated responses systems. In independent responses systems,

response variables are entirely independent from each other and there are no correlations

between them. For example, consider a process where its product is a piston. If the response

variables are piston surface smoothness and piston height, it can be concluded that we are

dealing with an independent multi-response system because, in fact, surface smoothness

has no correlation with piston height. In these multi-response systems, we can consider

each response independently and study changes in levels of control factors on each response

without considering other response variables. According to this method, it is obvious that

analysis and optimization (finding the best factor-level combination) stages are more simple

in these systems rather than in correlated responses systems. To assure the efficiency

of the model in analyzing independent multi-response system design, it is necessary to
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check the normality assumption of the responses. In a process with correlated responses,

it is not possible to analyze and study each response separately because it may result in

wrong interpretations. Consider the piston production example which response variables are

weight and piston diameter respectively. It is obvious that we cannot consider them as two

completely independent responses. Note that in analyzing these problems under classical

experimental design methods, the realized values for response variables should necessarily

have multivariate normal distribution in order to satisfy the adequacy of model. Due to the

difficulty of analysis and optimization of experiments in these systems, in most articles

correlation between response variables is usually ignored (for example, Ramakrishnan

and Karunamoorthy, 2006, Tong eta al., 2007; Bashiri and Hejazi, 2009). For this reason,

optimization approaches for correlated multi-response systems have lack of variety.

Approaches for optimization of independent multi-response problems can be divided

into several general categories. One of these categories is dealing with complicated math-

ematical statistical models. Such approaches include the following: Khuri and Conlon

(1981), Logothetis and Haigh (1988), and Pignatiello and Joseph (1993) who used poly-

nomial regression model for multi-response optimization. Tong and Su (1997) developed a

method based on applying fuzzy set theory for optimization of multi-response production

process. Ames et al. (1997) used response surface methodology for solving multi-response

problems. Another category consists of heuristic and metaheuristic algorithms and neu-

ral network based methods for multi-response optimization. For example, Jeyapaul et al.

(2005) provided an integrated approach using signal to noise ratio and genetic algorithm

for optimization of multi-response problems. Su and Hsieh (1998) and Tong and Hsieh

(2000) used artificial neural network. These methods cannot be applied equivalently in

every multi-response problem. In another category researcher first converts all responses to

one process performance index (PPI) and then optimizes the process considering this index.

Following examples are using such approaches: Derringer and Suich (1980) modified de-

sirability function to optimize several response variables simultaneously. Shiau (1990) and

Tai et al. (1992) considered weighted signal to noise ratio as process performance index.

Pan et al. (2007) and Haq et al. (2007) used fuzzy dependency analysis method for ob-

taining PPI. Ramakrishnan and Karunamoorthy (2006) suggested multiple response signal

to noise ratio. Tong et al. (2007) used VIKOR method, which is adaptive ranking method

in multi-criteria decision making (MCDM), for multi-response optimization. Bashiri and

Hejazi (2009) studied multi-response optimization from the MADM point of view using

various methods such as: TOPSIS, which operate based on the shortest distance from ideal

solution and the largest distance from the negative ideal solution, ELECTRE III, VIKOR,

PROMETHEE II, which uses preference functions for indicating the difference between

cases. Gauri and Pal (2010) implemented five methods—WSN, GRG, MRSN, VIKOR,

and WPC— on three data sets. They mentioned methods that assume responses are uncor-

related. This article is based on the last mentioned category but considering the correlation

structure as well.

Optimization of correlated multiple response problems has been discussed less than

independent ones. Chiao and Hamada (2001) found the best probability of being responses

in a specification region. Maghsoodloo and Chang (2001) developed the quadratic loss

function and signal to noise ratios for a bivariate response when both quality character-

istics were from the same type. Then, Maghsoodloo and Huang (2001) studied on mixed

bivariate responses and developed quadratic loss function and signal to noise ratios for

them. Ozdemir and Maghsoodloo (2004) extends quadratic quality loss function and signal

to noise ratios for trivariate cases. Ko et al. (2005) proposed a new loss function method

which accommodates robustness, quality of predictions and bias in a single framework.
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Table 1

A classification of some previous studies for optimization of correlated

multiple response problems

Method Article(s) Strength(s) Weakness(es)

Probability of being

in a specification

region

Chiao and Hamada

(2001)

Stochastic results,

easy to

understand basis

Results depend on

specification region,

Do not consider

distance to target,

Difficult to use

when number of

responses increases

Quality Loss

function

Maghsoodloo and Chang

(2001); Maghsoodloo

and Huang (2001);

Ozdemir and

Maghsoodloo (2004),

Ko et al. (2005)

Easy to use,

consider

robustness

Deterministic results,

Difficult to

understand basis

Principal

component

analysis

Antony (2000), Liao

(2006), Datta et al.

(2009)

Easy to use Deterministic results,

Some information

loses, Optimization

direction is changed

and indefinite after

transformation

Double-exponential

desirability

function

Wu (2005) Uses both quality

loss and

desirability

functions

concept

Deterministic results,

Results depend on

specification region,

Difficult to

understand basis

Optimality

probability index

(OPI)

This paper Stochastic results,

Easy to

understand

basis, Considers

distance to

target,

difficult to use when

number of

responses increases

Some articles applied principal component analysis (PCA) to transform some correlated

responses to the same number or fewer independent responses. For example, Antony (2000)

used the first PC to solve the problem but Liao (2006) studied the problem by considering

all PC’s and proposed weighted principal component method. Datta et al. (2009) utilized

genetic algorithm after performing PCA method. Wu (2005) proposed an approach based

on the double-exponential desirability function which has been modified by considering

Taguchi’s loss function, to optimize the correlated multiple quality characteristics. Table 1

shows classification of some previous studies for optimization of correlated multiple re-

sponse problems considering their strengths and weaknesses.

As shown in Table 1, stochastic results considered as strength for Chiao and Hamada

(2001)’s method, because responses in real problems are stochastic and so it is better to
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answer to these problems stochastically it means that a treatment is an optimum one with

a probability. In the other methods lack of this advantage can be considered as weakness.

Nevertheless, Chiao and Hamada (2001)’s method needs to specify specification limits for

each response and moreover it cannot consider distance of responses from their targets. In

this study, we proposed an approach based on multivariate normal probability to find the

best factor-level combination of an experimental design with correlated responses without

need to specify limits where distance to target are considered in calculations and each

combination’s optimality probability is computed by considering all other treatments. In

the next section, we define model and estimate its parameters. Then we propose a heuristic

algorithm to search and find the best treatment for the large-sized problems. For better

comprehension, some numerical examples are presented in Sec. 3 and finally conclusions

are presented in the last section.

2. Proposed Method

2.1. Model Statement

Suppose that we have an experimental design with n treatments and m normally distributed
correlated responses. Our goal is to find the best factor-level combination to achieve opti-
mum values for responses. For this purpose, we define a multivariate probability for each
combination which shows the probability of being optimum in all responses between all
the treatments. Equation (1) shows the optimality probability index (OPI) for treatment k:

OPIk =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n
∏

i=1
i �=k

P (y1k > y1i, . . . , ymk > ymi) for LTB Responses

n
∏

i=1
i �=k

P (y1k < y1i, . . . , ymk < ymi) for STB Responses

n
∏

i=1
i �=k

P (|y1k − t1| < |y1i − t1| , ..., |ymk − tm| < |ymi − tm|) for NTB Responses

k = 1, 2, ..., n

(1)

where ymi is mth response corresponding to the ith treatment and the tm is target value for

mth response when its type is nominal the best (NTB).

In the case of larger the better (LTB) and smaller the better (STB) responses, when

all responses have normal distribution, OPIk is product of m multivariate normal proba-

bilities. However, in the case of NTB responses, the best factor-level combination should

have minimum absolute values of responses from their targets for all responses. So, the

multivariate probability function should not necessarily have normal distribution. To over-

come this problem, first we can transform NTB responses to STB type by using absolute

values of target corrected responses. As mentioned before this transformation can violate

the normality assumption. In such cases we should use another transformation on new STB

responses to change their distribution to normal again. There are many problems with one

or more characteristics which have different type from other ones. For example, suppose

that we have a problem, with two correlated responses which have STB and LTB type,

respectively. In such problems, we can use the y = 1/x transformation where x is an LTB
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quality characteristic and obtained y is an STB one or use a mixed multivariate probability

which can be obtained from Eq. (1).

2.2. Parameter Estimation

For calculating Eq. (1), we should estimate parameters for multivariate normal dis-

tribution, in each treatment. Equation (2), shows multivariate normal distribution

where Y = [y1, y2, . . . , ym], M = [µ1, µ2, . . . , µm] and � = [σyiyj
], i = 1, 2, . . . , m; j =

1, 2, . . . , m are response vector, mean vector, and covariance matrix, respectively.

f (y1, y2, ..., ym) =
1

(2π )
m
2 |�|

1
2

e(− 1
2

(Y−M)′�−1(Y−M)) (2)

Note that |�| is determinant of covariance matrix and (Y − M)′ is transpose of

(Y − M).

The least square estimators for multivariate normal probability parameters are as

follows:

µ̂i = xαi, i = 1, . . . ,m (3)

log
(

σ̂ 2
i

)

= xβi, i = 1, . . . ,m (4)

tanh−1(ρ̂ij ) = xγij , 1 ≤ i < j ≤ m (5)

The logarithmic model for variances ensures positive values for them. Correlations are

between −1 and 1 so we use the inverse hyperbolic tangent transformation (Rao, 1973)

which is defined as:

tanh−1(ρ) =
1

2
log

(1 + ρ)

(1 − ρ)
(6)

By estimating the above parameters for responses corresponding to each treatment

we can calculate optimality probability for each treatment of experimented or non-

experimented ones with respect to other possible treatments by using Eq. (1).

2.3. Proposed Heuristic Algorithm

In the case of a problem with large number of controllable factors and their levels, cal-

culating Eq. (1) for all factor-level combinations may be very time consuming. For better

comprehension suppose that we want to calculate OPI for some problems with different

number of controllable factors. Figure 1 shows estimation of computational time to solve

such problems on notebook with an AMD E-350 processor and 4 gigabytes of RAM when

all factors have 3 levels.

It is obvious that by increasing the number of factors, calculation time increases

exponentially. So, a heuristic algorithm can be useful to overcome the computation time

problem. The proposed approach tries to find the most probable treatment to be optimum in

a first probability calculation and in each iteration finds it again. So solution space in each

iteration decreases more and more and this strategy can reduce number of calculations. The

proposed approach is described in Table 2 as a pseudo-code.
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Figure 1. Computational time against number of controllable factors.

3. Numerical Examples

In this section, two numerical examples from previous articles were studied according to

the proposed method and results were compared with results of referenced articles. Then a

simulated numerical example with large number of factors is presented to show efficiency

of the proposed heuristic algorithm.

Table 2

Pseudo-code of the proposed heuristic algorithm to find the best combination

Transform all responses to STB type;

Find the estimation equations for the parameters of multivariate normal probability,

µ̂i, σ̂i, ρ̂ij , i = 1,2, . . . ,m,j = 1,2, . . . ,m using Eqs. (3)–(5);

select a random factor-level combination k;

calculate multivariate normal probability parameters for responses in combination k;

calculate pk,j (y1k < y1j , . . . , ymk < ymj )for j = 1,2, . . . ,n where j �=k;

calculate Eq. (1) for combination k, pk;

set k∗ = k, and pk∗ = pk;

set the number of desired combinations to check, l;

select l combinations with minimum pk,j values and store in J;

repeat

for k = J(1) to J(l)

calculate multivariate normal probability parameters for responses in combination k;

calculate pk,j (y1k < y1j , . . . , ymk < ymj )for j = 1,2, . . . ,n where j �=k;

calculate equation (1) for combination k, pk;

if pk>pk∗, set k∗ = k and pk∗ = pk;

next k;

select l combinations with minimum pk∗,j value and store in J;

until pk∗ do not changes.
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Table 3

Values for means and variances of each response in each treatment on Example1

Treatment A B C D µ1 µ2 µ3 σ 2
1 σ 2

2 σ 2
3

1 1 1 1 1 52.8398 43.3660 64.1734 20.9679 7.0849 35.9961

2 2 1 2 1 20.4600 10.9455 32.8927 15.7183 12.8105 8.3774

3 1 2 2 1 37.9198 28.9401 53.6243 46.9146 29.8066 105.8522

4 2 2 1 1 34.5153 25.5751 48.0280 15.8422 7.8996 3.6614

5 2 2 2 2 47.7471 38.6355 61.5471 3.9807 2.5741 9.3844

6 1 2 1 2 48.9013 39.7489 61.5565 13.5287 15.1502 15.4528

7 2 1 1 2 31.8805 21.7594 42.3877 8.0884 7.5814 5.5111

8 1 1 2 2 36.4230 25.8339 50.4595 22.5505 10.2026 49.4551

3.1. Example 1

Consider an experimental design with three STB-type responses and four controllable

factors extracted from Ozdemir and Maghsoodloo (2004). The design of experiment is

24-1 fractional factorial design with resolution IV. Each response has four replicates in

each treatment. Figure 2 illustrates normal probability plots with 95% confidence in-

tervals for three STB responses values and it can be seen from p-values that we can’t

reject the hypothesis that responses values have normal distribution. Table 3 shows the

means and variances values for each response and Table 4 shows correlations values

Figure 2. Normal probability plots with 95% confidence interval for Example 1 responses.
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Table 4

Values for correlations between responses in each treatment on Example 1

Treatment A B C D ρ(1,2) ρ(1,3) ρ(2,3)

1 1 1 1 1 0.8873 −0.8793 −0.9796

2 2 1 2 1 0.8920 0.0439 0.2580

3 1 2 2 1 0.9630 0.3791 0.5988

4 2 2 1 1 0.9199 0.9708 0.9500

5 2 2 2 2 0.8168 −0.4368 0.1621

6 1 2 1 2 0.9749 0.3053 0.4820

7 2 1 1 2 0.8343 −0.2329 0.2833

8 1 1 2 2 0.9351 −0.8267 −0.9431

between two responses at each treatment. These values are obtained from equations

(3)–(5).

In this example we want to select one of the implemented treatments as optimum so

there is no need to estimate other treatments parameters. By calculating probability (6) for

each of eight treatments, the optimum treatment can be found:

Pk =

8
∏

i=1
i �=k

P (y1k < y1i, y2k < y2i, y3k < y3i). (7)

Table 5 shows the optimality probability indices and average quality losses values for

each treatment. It can be seen that the factor-level combination (2,1,2,1) in treatment 2 is

optimum by considering other treatments OPIs. The quality losses values from Ozdemir and

Maghsoodloo (2004) confirms our result about first and second best treatments. However,

it can be seen that combination (1,2,2,1) in treatment 3 which is the 3rd best combination

based on OPI’s values, has 5th minimum quality loss average. Note that, the OPIs show the

probability of being optimum for each treatment. So, when the treatment (2,1,2,1) which

Table 5

Optimality probability for each treatment in Example 1

Treatment A B C D OPIk

OPI based

rank

Average quality

losses (AQL)

AQL

based rank

1 1 1 1 1 8.08 × 10−170 8 52.9142 8

2 2 1 2 1 0.2187 1 8.1328 1

3 1 2 2 1 1.08 × 10−7 3 29.353 5

4 2 2 1 1 7.13 × 10−10 4 22.0571 3

5 2 2 2 2 9.98 × 10−64 7 44.7216 6

6 1 2 1 2 2.93 × 10−34 6 46.3093 7

7 2 1 1 2 1.97 × 10−6 2 15.7000 2

8 1 1 2 2 1.04 × 10−16 5 23.0897 4
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Figure 3. OPI changes for best treatment against correlation coefficient between response 2 and 3

in treatment 2.

has smaller quality losses value is optimum by probability of 0.2187, it is logical that other

treatments can be optimum by probability of almost zero.

For better comprehension, a sensitivity analysis can be done. Figure 3 shows increase

of OPI for best treatment when correlation coefficient between response 2 and 3 changes

from −0.1 to 0.4 in treatment 2. To analyze effect of variance, suppose that variance of best

treatment changes from 1 to 25. Figure 4 shows changes of OPI for best treatment when its

variance shifts. It shows that optimality probability of a treatment will be decreased when

its related responses variances is growing.

Figure 4. OPI changes for best treatment against variance of treatment 2.
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Table 6

Optimality probability index and Chiao and Hamada (2001)’s probability for

the three best treatments in Example 2

A B C D E G OPIk

Chiao and Hamada

(2001)’s probability

−1 −1 −1 −1 −1 1 0.2326 × 10−12 0.5332

−1 1 −1 −1 −1 1 0.0058 × 10−12 0.7216

−1 −1 1 −1 −1 1 0.0075 × 10−16 0.5332

3.2. Example 2

As the second example, consider a design to minimize the imbalance of a plastic wheel

cover component described by Chiao and Hamada (2001). There are two NTB quality char-

acteristics: total weight (Y1) and the balance of the component (Y2) and seven controllable

factors with two levels which are important to the component’s balance. As mentioned

before in Sec. 2, we should use Johnson transformation (Chou et al., 1988) to change NTB

responses to STB types in order to use the proposed method. Equation 7 and 8 show these

transformations for two responses where Z1 and Z2 are transformed STB type responses:

Z1 = 0.387228 + 0.365089 × Ln

(

|Y1 − µ1| − 0.0888751

21.2924 − |Y1 − µ1|

)

(8)

Z2 = 0.122266 + 0.389592 × Ln

(

|Y2 − µ2| − 0.0863844

1.26185 − |Y2 − µ2|

)

. (9)

Then least square estimators for multivariate distribution parameters can be calculated

using Eqs. (3)–(5) to write experimental factor models as follows:

µ̂1 = 0.079−0.288x4 + 0.643x5 − 0.297x7

µ̂2 = −0.047 + 0.109x3 + 0.241x1 + 0.763x5 − 0.486x7

log
(

σ̂ 2
1

)

= −1.060 − 0.390x1 + 0.202x4 − 0.267x7

log
(

σ̂ 2
2

)

= −0.870 − 0.282x2

tanh−1(ρ̂1,2) = −0.106 + 0.559x1 − 0.318x5 − 0.494x7

(10)

Table 6 shows three best factor-level combinations for this example. It is obvious from

Eq. (9) that factor F is not significant and does not affect on probability value. The optimal

combination by the proposed method is (-1,-1,-1,-1,-1, ,1) with optimality probability

index of 0.2326 × 10−12 where an insignificant factor denoted by . It can be seen that

combination (-1,1,-1,-1,-1, ,1) which is the best combination in Chiao and Hamada (2001),

has better index of Chiao and Hamada (2001)’s probability but it’s optimality probability

index is not large enough to be the optimal combination. Note that Chiao and Hamada

(2001)’s probability shows the proportion of conformance to specification region and is

very sensitive to defined upper and lower bounds of the responses. However, the OPI shows

the probability of being the optimum treatment between other possible combinations.



Table 7

Calculated parameters in each treatment for Example 3

Treatment A B C D E F G H I µ1 µ2 σ2
1 σ 2

2 ρ(1,2)

1 1 1 1 1 1 1 1 1 1 4.1470 102.2243 0.0108 15.1017 −0.2968

2 1 1 1 1 2 2 2 2 2 3.3581 112.8818 0.0068 1.9950 −0.5470

3 1 1 1 1 3 3 3 3 3 3.8452 114.4757 0.0042 6.3085 0.8369

4 1 2 2 2 1 1 1 2 2 2.6830 103.8821 0.0079 8.8593 −0.2996

5 1 2 2 2 2 2 2 3 3 2.3656 95.9612 0.0020 1.8893 −0.7966

6 1 2 2 2 3 3 3 1 1 2.7403 109.2219 0.0028 3.4271 −0.8795

7 1 3 3 3 1 1 1 3 3 4.2255 102.5917 0.0204 15.2438 0.9620

8 1 3 3 3 2 2 2 1 1 3.2540 106.0403 0.0034 7.8308 0.3466

9 1 3 3 3 3 3 3 2 2 2.1211 100.5824 0.0054 2.8403 0.4179

10 2 1 2 3 1 2 3 1 2 3.1943 103.1929 0.0040 1.3277 −0.2117

11 2 1 2 3 2 3 1 2 3 4.3310 109.2780 0.0192 2.1912 0.3644

12 2 1 2 3 3 1 2 3 1 3.1498 106.6018 0.0019 7.9685 0.6525

13 2 2 3 1 1 2 3 2 3 3.9268 112.3448 0.0011 1.3944 −0.3144

14 2 2 3 1 2 3 1 3 1 3.1411 108.5867 0.0073 9.6146 −0.0389

15 2 2 3 1 3 1 2 1 2 3.5400 98.00457 0.0045 3.2939 −0.0311

16 2 3 1 2 1 2 3 3 1 3.6162 107.0205 0.0036 0.6142 −0.9760

17 2 3 1 2 2 3 1 1 2 3.3618 97.19684 0.0013 12.3763 0.8491

18 2 3 1 2 3 1 2 2 3 3.1058 106.5303 0.0060 6.0686 −0.9593

19 3 1 3 2 1 3 2 1 3 4.5658 102.2799 0.0122 1.0111 0.5382

20 3 1 3 2 2 1 3 2 1 3.5561 101.0539 0.0040 6.8441 0.1881

21 3 1 3 2 3 2 1 3 2 4.8375 101.3454 0.0075 3.4844 −0.0213

22 3 2 1 3 1 3 2 2 1 3.6075 103.2989 0.0051 0.0620 0.9199

23 3 2 1 3 2 1 3 3 2 3.7011 96.95306 0.0043 3.2635 −0.9215

24 3 2 1 3 3 2 1 1 3 3.9105 104.8708 0.0003 5.3679 0.0167

25 3 3 2 1 1 3 2 3 2 3.2120 107.8587 0.0044 17.8818 0.9324

26 3 3 2 1 2 1 3 1 3 2.6008 103.7729 0.0004 0.7953 0.5587

27 3 3 2 1 3 2 1 2 1 4.6149 102.5406 0.0093 1.3074 −0.2479

4
3
3
4



Optimality Probability Index 4335

Table 8

Optimality probability for the three best treatments in Example 3

Rank A B C D F G H I OPIk

1 1 3 2 1 3 3 1 1 4.8997 × 10−128

2 1 3 2 1 3 2 1 1 1.0896 × 10−144

3 1 3 2 1 3 1 1 1 3.1330 × 10−169

3.3. Example 3

In previous examples because of problems size the probability calculations need a negligible

computational time and it was not necessary to use a heuristic search approach. Now we

consider a simulated design which has nine controllable factors with three levels for each

of them and two STB correlated responses. Table 7 shows calculated parameters for each

treatment.

The least square estimators for multivariate normal distribution parameters can be

found as below:

µ̂1 = 6.518 + 0.494x1−0.271x2−1.758x3 + 0.447x2
3 + 0.643x5 + 0.337x8x9

µ̂2 = 114.104 + 2.241x4 − 7.825x6−7.822x8 + 4.587x6x8

log
(

σ̂ 2
1

)

= −2.011−0.054x1x2+0.091x7x9 + 0.065x8x9

log
(

σ̂ 2
2

)

= 1.701−0.216x1 − 0.223x7 − 0.077x4x6

tanh−1(ρ̂1,2) = −1.132 + 1.165x1x6 + 0.125x2x3

(11)

Solving such problem on a notebook with an AMD E-350 dual-core processor and

4 gigabytes of RAM can take lots of time about 550 h. So, it is better to use the pro-

posed heuristic approach. The algorithm was coded in MATLAB and after about 576 s as

computational time, it shows that optimum combination is (1,3,2,1, ,3,3,1,1) with optimal-

ity probability of 4.8997 × 10−128 between 6561 possible combinations. Table 8 shows

optimality probability values for three best combinations.

4. Conclusions

Multiple response optimization problems are complicated when there is correlation between

responses. In these problems, ignoring the correlation structure can undermine our method,

so we should use some techniques which can consider the correlation between responses.

In this study, we proposed a method for problems which can find the best treatment by

calculating a multivariate normal probability. A heuristic algorithm was presented to find

the best factor-level combinations in problems with large number of factors. The results

showed the efficiency of the proposed method comparing to other existing approaches.

The case of NTB responses without transforming to STB ones can be studied as a future

research. Moreover, non-normal responses can be considered in the future studies.
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