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Abstract� This paper studies the achievable secrecy rate of a 

decentralized wireless network consisting of N communication 

links exchanging information over a shared channel. It is assumed 

that there are M eavesdroppers attempting to listen to the 

transmitted information. In this regard, an on-off strategy is 

proposed to maximize the achievable secrecy rate of such network. 

Accordingly, it is shown that for large values of N, when the 

number of eavesdroppers (M) is less than-
( 

N 
)2' the achievable logn 

sum secrecy-rate 

ON(Log(N).log 10g(N)) 
(log N)2 

scales 
2N 10gM"- 210g log N + as 
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I. INTRODUCTION 

In recent years, tremendous data exchange through the 
wireless networks has encouraged service providers to 
incorporate some transmission protocols that utilize a shared 
mediwn to serve a large number of users. More recently, Ad-hoc 
networks have attracted much attentions to be utilized in such 
mediwns, as any node of network may attempt to send 
information to any randomly chosen node of network via some 
intermediate nodes through using a multi-hop transmission 
strategy [1]. 

In this regard, there exists a nwnber of works that have 
focused on the asymptotic behavior of ad hoc networks where 
the impact of fading and path loss are taken into account [1]-[3]. 
For instance, the capacity scaling of an ad-hoc network in the 
presence of additive Gaussian noise and path loss, is considered 
in [1]. Following by that, it is shown that the mobility factor 
increases the per user throughput of the network in [2], where 
the concept is thoroughly investigated in [3] under a general 
fading model. 

On the other hand, using a shared mediwn between a large 
number of users has raised some privacy and secrecy challenges 
to protect information against eavesdropping. In this regard, 
providing a secure communication mechanism which 
guarantees the users' privacy, is an attractive option to deal with. 
Accordingly, a considerable number of works are devoted to 
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explore the achievable secrecy rate of ad hoc networks under 
various conditions [4]-[8]. 

In a parallel path, the capacity scaling throughput has been 
investigated for isotropic single-hop channels. In [9], a network 
consisting of N transmitter-receiver pairs is studied, where it is 
asswned that each link can either transmit with a constant power 
or remain in silence. In this regard, the upper and the lower 
bounds on the network's capacity is derived in a Rayleigh fading 
environment. Some similar attempts have been made through 
[10]-[12]. In [10], the scaling behavior of the network's 
throughput is derived under the log-normal fading. Maximizing 
the number of active links is considered in [11], and the best link 
activation is considered for a general fading model in [12]. 

However, to the best of the authors' knowledge, the secrecy 
capacity of single-hop networks with asymptotically large 
number of legitimate and illegitimate users has not been 
addressed yet. We assume N disjoint communication links 
attempting to exchange information over a shared quasi-static 
isotropic block fading environment in which direct and cross 
channel gains are drawn from an i.i.d. complex Gaussian 
distribution of unit power. It is assumed that each transmitter has 
the Channel State Information (CSI) associated with its direct 
channel strength to its corresponding receiver. 

Moreover, there are M eavesdroppers that are trying to 
decode the exchanged information between the legitimate pairs. 
It is assumed that the number of legitimate transmitter-receiver 
pairs is greater than that of the eavesdroppers. The channel 
between each transmitter and any unintended receiver is 
suffering from block fading and additive white Gaussian noise. 
The information transmission by any node in the described 
network causes some amount of interference at any unintended 
legitimate receiver. Thus, information transmission by all of the 
transmitters does not necessarily improve the overall secrecy 
rate of the network. In this case, an on-off transmission strategy, 
based on some predetermined threshold is devised. According to 
the proposed strategy, only the transmitters that have improving 
effect on the overall secrecy rate of the network are activated. In 
this regard, the optimum value of the activation threshold, the 
maximwn nwnber of eavesdroppers to have a non-vanishing 
secrecy rate, and the maximum achievable secrecy rate of the 
network are derived in a high interference region. 
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Notation- In the current paper we will use bold capital letters 
and lower case bold letters to denote matrices and vectors, 
respectively. log(.) is the natural logarithm function; for 
functions feN) and g(N) we denote feN) = o(g(N)) 
if lim IfCN) I = 0 , f e N) = O(g(N)) if lim If(N)1 < 00 and N .... oo g(N) N .... oo g(N) 
f e N) = w(g(N)) if lim If(N)1 = 00 . The eventEN is called N .... oo g(N) 
asymptotically almost surely (a.a.s), if PreEN) � 1, when N � 
00. 

The rest of this paper is organized as follows. The system 
model, regarding the channel fading and noise characteristics are 
provided in Section 11. Moreover, the main problem is 
introduced at the end of this section. The problem statement and 
the analytical solution is presented in Section Ill, and the 
simulation results are presented in Section IV. Finally, Section 
V concludes the paper. 

11. SYSTEM MODEL 

A decentralized wireless communication network with N 
legitimate transmitter-receiver pairs and M non-cooperative 
illegitimate receivers, namely eavesdroppers, is considered. 
Each transmitter, e.g., the i 'th one, can transmit its desired 
information to its corresponding receiver with a constant pre­
determined power or remain silent (Fig. 1). 

In this model, the set of active links is denoted by A and the 
objective is to maximize the sum secrecy capacity over the 
selection of active links in every time slot. The desired link 
selection policy is based on some channel strength threshold 
comparison, i.e., if the direct channel strength associated with a 
certain transmitter-receiver pair exceeds the threshold, the 
transmitter is activated. Assuming there are K active links 
among the available N transmit-receive nodes in one time-slot 
and resorting them from 1 to K, the received signal at the i'th 
receiver when its corresponding transmitter is active, can be 
represented by summation of the signals associated with the 
direct link and cross links, as follows, 

K 
y, = hjjx, + L hijx} +Z" 

}�IJ" 
i = 1,2, ... ,K (1) 

In (1), hij represents the channel fading coefficient between 
the j'th transmitter and i'th receiver with channel 
strength 1 hij 12 = Yij' As mentioned earlier, the network is under 
block fading, which means that hij is assumed to be fixed during 
one time-slot and varies independently for the upcoming time­
slots. Moreover, Xi is the signal transmitted by the i 'th 
transmitter from a complex Gaussian codebook with a zero 
mean and unit power, i.e., Elxd2 = 1 and Zi is a complex 
circularly symmetric additive white Gaussian noise with unit 
variance. Moreover, there are M eavesdroppers in the network 
and the i'th one receives the transmitted signal associated with 
K active transmitters as follows, 

K e " he e y, = L.. UX} + z, , 
}�I 

I =1,2, ... ,M (2) 

Figure 1. Considered comminiucation network. (figure caption) 

In (2), hfj denotes the channel coefficient between the rth 
eavesdropper and the j'th transmitter where the corresponding 
channel strength is denoted by 1 hfj 12 = ytj. Xj represents the 
transmitted signal associated with the j'th active transmitter and 
z[ denotes the additive white complex Gaussian noise, i.e., 
CN(0,1) at the rth eavesdropper. It is worth mentioning that 
the channel coefficient associated with the legitimate and 
illegitimate receivers, i.e., hij and h1j, are assumed to follow a 
Gaussian distribution, which results in having an exponential 
distribution for their corresponding channel strengths. 

In this regard, providing secrecy for i 'th transmitter in 
physical layer, corresponds to communicating with a rate that 
the illegitimate receiver with the strongest channel strength 
cannot decode anything. In other words, considering 
{yii' yfi, ... , ytta as the channel strengths between the i 'th 
transmitter and the illegitimate receivers, the transmission policy 
depends on the maximum channel strength between the i'th 
transmitter and eavesdroppers, i.e·,y�i = max{yi'i, yfi' ... , ytta· 
Thus, the secrecy capacity associated with the i'th receiver can 
be formulated as follows, 

c. = [IOg(1 + �) -log(1 + 1:" > )]t (3) 
',,� 1 + I; 1 + I,' 

Where [x r = max(x, 0). The first term in the right-hand 
side of (3) denotes the capacity of the i'th forward link and the 
second term denotes the capacity of the link between the lth 
transmitter and its corresponding strongest eavesdropper. The 
term Ii = I.J=l.j'l' i Yij denotes the interference power at the i'th 
receiver, which is caused by other active transmitters. 
Similarly, I[ = I.J=l,j'l' i yfJ plays the role of interference for the 
eavesdropper that enjoys the strongest channel strength to 
decode the i 'th transmitter's information. Consequently, the 
sum secrecy capacity of the network can be defined as the 
summation of secrecy capacities, associated with all of the active 
transmitters as follows, 
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In this paper, we are going to derive a lower bound on the 
sum secrecy capacity of the network (C;�m), namely sum 
secrecy rate (Rff��) and maximize the aforementioned rate by 
proposing the prescribed ON/OFF scheme. 

Ill. MAXIMIZING THE SUM SECRECY RATE 

In order to characterize the system performance, one can 
consider deriving a lower bound on the sum secrecy capacity of 
the network. We consider an ON/OFF scheme which activates a 
transmitter in the case that its direct signal to noise plus 
interference ratio (SINR) is above a certain threshold. We 
assume that a large number of active links are present in each 
transmission block, and according to the weak law of large 
numbers, the interference term tends to its mean value. Thus, the 
SINR consideration simplifies to the case of considering direct 
channel strength and activating a transmitter that has a direct 
channel strength greater than a predetermined threshold, 
i.e',Yii > t. The validity of the aforementioned assumption on 
the number of active links, will be verified at the end of this 
section. In this case, the following inequalities can be written, 

C::;" > :t (log(l + _t -) -log(l + r';'i 
e )) � I+� I+� 

(a) t K re �Klog(l+ 1 )-Llog(I+�), 1+- " K I i=1 1+1i K L..i=I' 
(5) 

Where (a) in (5) is obtained by incorporating the Jensen's 
inequality [13]. To characterize the system performance, one can 
consider that the strongest channel strength between any 
transmitter and eavesdroppers is lower than a certain value, with 
unit probability. For the case of complex zero-mean and unit­
variance Gaussian channel coefficient between the i 'th 
eavesdropper and the j 'th transmitter, i.e., hfj , the channel 
strength, i.e., Y{j, follows an exponential distribution with unit 
mean and variance. Thus, it can be easily shown that the 
maximum channel strength associated with the i'th transmitter 
has the following cumulative distribution function (CDF), 

F, (y) = Pr(r�i < y) = (l-e-y )M-I (6) Ymi 

Noting the fact that the communication is occurred in the 
presence of a large number of eavesdroppers, we try to find a 
threshold that slightly deviating from it in positive values results 
in tending FYmi to unity, and slightly deviating from it to the 
negative values, results in tending the aforementioned CDF to 
zero in an a.a.s sense. In this regard, using some simple 
mathematics, one can arrive at y = log M as the maximizer 
point of the associated pdf. Noting the following limitations, 

lim Pr (r:'i ::::; log M -4) = lim (I-� '( M-----too M-----tco M ) (7) 

lim Pr (r':'i ::::; log M + 4) = lim (1-
e-A iM 

= e-e-" 
M-----tco M----')co M ) 

_e-oM ( io,M ) -oM (bl _ ( 1 ) =e =e -I-o -M M ' 
(8) 

it can be turned out that one can consider the maximum 
channel strength associated with the eavesdroppers as f:l = 
10g M +il, where il = w(l) = oM (log M) .  Thus, one can 
replace the maximum channel strength between the i 'th 
transmitter and the eavesdroppers with f:l, in (6). Moreover, since 
the channel coefficients, i.e., hijs are complex Gaussian random 
variables of zero mean and unit variance, the channel strengths, 
i.e., Yij s are exponentially distributed with unit mean and 
variance. Since, the interference terms Ii and It are the sum of 
theK -1 random variables with exponential distribution, they 
are Gamma distributed with mean and the variance equal to K -
1. As a result, incorporating the Chebyshev inequality for some 
real and positive value of ( = w (1), the lower and upper bounds 
of the interference terms can be formulated as follows, 

One can take an average of (9) on all of the values of 
i (1 :::; i :::; K) and write the following relation, 

1 K K -1-�� K -1 < - Ll < K -1 + �� K -1 (10) K i=1 
Defining1Jl � (.,,)K -1 = w(l) that satisfies1Jl = oK (K), the 
lower bound of (5) can be written as follows, 

t (j. R::::' � K log(l + -. -) -K log(l + -. -). (11) K+1jI K-1jI 
Additionally, due to the on-off behavior of the active links, K is 
a binomial random variable with parameters Nand q, where 
considering the FruCYii) as the (CDF) of the direct channel 
strength between the i'th transmitter and receiver pair, q = 1 -
Frii (Yii) denotes the probability of the link activation. 
Consequently, considering t as the activation threshold, one 
would arrive at q = e -t. Again, incorporating the Chebyshev 
inequality the lower and upper bounds on the number of the 
active link are obtained as follows, 

(12) 

Where v = w(1). Knowing that (11) is an increasing function 
with respect to K, one would substitute the parameter with its 
lower bound and write, 

(13) 

In what follows, we tend to find the optimum threshold of the 
link activation. Considering 1JI = OK (K), it can be neglected 
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from the denumerator of the SINR terms, as comparing it with 
K. Therefore, the equation (13) can be simplified to, 

(14) 

To get a starting point for the threshold value, we temporarily 
forget the term v-VNe-t in (14) and write the equation in the 
following form, 

RSlllll =Ne-/log(1 -)-Ne-/log(1+�). (15) sec Ne-1 Ne-1 

The result of (15) will help us in finding the actual optimum 
value of activation threshold. Taking the approximation of 
log(l + x) � x - x2 into account, the achievable secrecy rate 2 
can be formulated as follows, 

2 �2 J)Sllnl =t __ t --�+ --
. (16) "sec 2Ne-1 2Ne-1 

Taking a derivative from R:::' in (16) with respect to (w.r.t.) t, 
and equating the result to zero, gives, 

2Ne-' = 2t+(2 _A2, 

which can be further simplified to, 

(17) 

�2 log log N t=log(2N)-210glogN+ 2+0N( ). (18) 
(logN) 10gN 

Now, remembering the term v-VNe-t in the equation (14) and 
incorporating the initial approximation used for deriving (16), 
Rsum b ' '" 11 sec can e wntten as 10 ows, 

(19) 

A ·  k' d "  fr Rsum. (19) d gam, ta mg a envatlve om sec III W.r.t. t an 
equating it to zero, leads to, 

2 (Ne-1 -v../ Ne-1)2 -2t(Ne-1 -v-./ Ne-I) 

_(t2 _A2)(Ne-1 -!::..-./Ne-1) = 0 
2 

(20) 

After some mathematics, one can write the parameter t as 
follows, 

(21) 

Plugging the result of (18) as an initial point into the right-hand 
side of (21), and after some mathematics we can arrive at, 

�2 10glogN v 
t = log (2N)-210glogN + 

2 
+4( )+ON(--)' 

(log N) log N log N 
(22) 

The result of (22) can be further simplified to (23), by the 
assumption of v = 0 (log log N ) as follows, 

�2 log log N t = log(2N) -210g log N + 2 + 0N( ). (23) 
(logN) 10gN 

which can be considered as the optimal link activation threshold 
value. Substituting the result of (22) into (19), the asymptotic 
achievable secrecy rate can be formulated as follows, 

I)""" = 10 2N _ 210 10 N + ° ( _�_
2_ + log log N ). (24) "sec g M g g N (IogN)2 10gN 

The result of (24) declares that, in order to have a non-vanishing 
secrecy rate the following relation should be satisfied, 

2N 
log --2 log log N » 0 M (25) 

The inequality (25) implies that the order of the eavesdroppers 
is restricted to, 

N M = o ( ) N (IogN)2 . (26) 

It is worth mentioning that considering the maximum order of 
the eavesdroppers in (26) and the result of (23) for the link 
activation threshold, the validity of the assumption of having a 
large number of active links in each transmission block, in the 
beginning of this section can be verified. Moreover, considering 
(26), the maximum channel strength associated with the 
eavesdroppers can be formulated as follows, 

Figure 2. Acheivable sum secrecy rate, associated with the proposed 
ON/OFF method. 
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Comparing the derived relation for /:::,. to the last terms of t and 
l\��m in (23) and (24), one can neglect re-write the optimal link 
activation value and the achievable sum secrecy rate as follows, 

loglogN t = log(2N) - 21oglogN + ONC ). 
logN 

R""" = 10 2N 
-210 10 N +0 ( logN. log logN

). "sec g M g g N (log N)2 

IV. SIMULATION RESULTS 

(28) 

(29) 

In this section, we aim at demonstrating that the average 
achievable secrecy rate of the considered network has the same 
behavior as the asymptotic secrecy rate derived in (24). In this 
regard, a network consisting of N transmitter-receiver pairs in 
the presence of M = 40 eavesdroppers is considered. The 
number of transmitter-receiver pairs is swept from 5 x 104 
to 4 x 10"5. The channel coefficients between any transmitter 
and receiver is drawn from a circularly symmetric Gaussian 
random variable of unit variance and the additive noise 
of CN(O,l) is assumed to be present at each receiver. The 
simulation result of Fig.2 demonstrates that the asymptotic sum 
secrecy rate of the network has the same behavior as average 
achievable secrecy rate, derived from simulation. 

V. CONCLUSION 

The achievable secrecy rate of a decentralized network is 
considered throughout this paper. It is shown that in a Rayleigh 
flat fading environment, where N legitimate transmitter­
receiver pairs are communicating to each other in the presence 
of M eavesdroppers. In this regard, an on-off transmission 
protocol is proposed that aims at maximizing the achievable 
secrecy rate in the network. Accordingly, the achievable secrecy 
rate as well as the limitation on the number of eavesdroppers to 
have non-vanishing sum secrecy rate are addressed. 
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