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Nonparametric Multiuser Detection in
Non-Gaussian Channels

Babak Seyfe and Ahmad R. Sharafat, Senior Member, IEEE

Abstract—Existing multiuser detection techniques in wireless
systems are based on the assumption that some information on the
parameters of the probability density function (pdf) of ambient
noise is available. Such information may not be available in all
cases, particularly for non-Gaussian and impulsive noises, or may
change depending on circumstances. In this paper, we present
a technique for multiuser detection that does not require any
a priori knowledge about the noise parameters. This method is
based on using pseudo norms for linear nonparametric regression.
Analytical and simulation results show that the proposed method
offers an improved, or at least comparable, performance over
existing robust techniques in the absence of any information on the
nature of noise in the environment. The increased computational
complexity is marginal compared to existing parametric detectors.
In addition, the proposed nonparametric detector is portable in
the sense that it does not need to be tuned for different noise
models without any considerable degradation of performance. We
also show that in non-Gaussian noise, the performance of blind
adaptive nonparametric multiuser detectors is better than that of
robust multiuser detectors.

Index Terms—Nonparametric multiuser detection, pseudonorm,
sign detector, Wilcoxon detector.

I. INTRODUCTION

I
N the last two decades, multiuser detection has been the

subject of continuous studies with a view to developing

methods that would enhance the performance of multiple access

communication systems [1]. The performance of such methods

is limited by the interference generated by other users, called

“multiple access interference (MAI)” and ambient noise in the

environment. The majority of documented research assume that

ambient noise is additive white Gaussian noise (AWGN) [1].

However, it is well recognized that even though the Gaussian

noise model is mathematically appealing, it simply does not

apply in many situations [2]. For example, in underwater

acoustic communication systems [3]–[5], urban and indoor

wireless systems [6]–[10], low-frequency data recordings [11],

and very high-speed digital subscriber line (VDSL) systems

[12], ambient noise is known through experimental measure-

ments to be decidedly non-Gaussian due to the impulsive nature
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of the nonmade electromagnetic interference (or other effects).

The Gaussian noise is most entropic among all finite variance

noise models. This implies that in non-Gaussian channels, the

performance of a detector designed assuming Gaussian noise

model would be inferior to that of a detector designed for

non-Gaussian environments [14]. This has led researchers in

recent years to address the problem of non-Gaussian noise in

wireless systems [13]–[21].

It has been shown that a conventional (i.e., single user)

detector designed for non-Gaussian environments but used for

multiuser detection has a better performance in non-Gaussian

environments compared to a multiuser detector designed for

Gaussian noise [13], [21]. Considering this, techniques were

developed for designing multiuser detectors assuming that the

parameters of the actual non-Gaussian noise model are avail-

able [13], [15], [22]. In particular, robust methods developed by

Huber [23] were used by Wang and Poor to design the minimax

multiuser detector [13]. However, the performance of such

detectors in particular and parametric methods in general, de-

pends on the availability of the parameters of the non-Gaussian

noise model.

Notwithstanding the preference for an accurate and actual

non-Gaussian noise model, deriving the parameters of such

a model is usually difficult, and is impossible in some cases.

Therefore, there is a need to devise nonparametric detectors

which work without accurate information on the noise model.

Such methods have been widely used in various signal pro-

cessing applications with encouraging results [24]–[27]. In this

paper, we propose a nonparametric multiuser detector that uses

minimal assumptions about noise characteristics. We show that

in such environments, our proposed detector performs better

than existing robust detectors (especially in highly impulsive

noise). Our proposed detector uses pseudonorms for nonpara-

metric regression by applying a system model that is based on

regression with an intercept parameter instead of the conven-

tional system model that is based on regression through the

origin. Since regression is not performed through the origin, we

therefore need to estimate the value of intercept parameter.

This paper is organized as follows. In Section II, we de-

scribe the synchronous CDMA model studied in this paper, as

well as the impulsive noise model, and the conventional and

nonparametric models for multiuser detection in non-Gaussian

channels. In Section III, we develop our nonparametric mul-

tiuser detector, followed by Section IV, where we propose

a blind nonparametric multiuser detector using subspace

methods. Section V examines simulation results, and finally in

Section VI, we present our conclusions.
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II. SYSTEM MODEL

A. The Conventional System Model for Multiuser Detection

We assume a baseband digital synchronous DS-CDMA

system. A waveform received by a terminal with a coherent

BPSK modulation is modeled as

(1)

where is the ambient noise (assumed to be white), and

is the transmitted signal. The received signal is comprised of

data signals of active users and noise. It passes through a chip-

rate sampler and produces an output vector with elements

during each symbol interval . Thus

(2)

where is a received signal vector and

is a matrix whose column , is the

normalized signature waveform of the th user. In (2),

is the matrix of users’ ampli-

tudes, is the vector of users’ symbols

, and is a vector of indepen-

dent and identically distributed (i.i.d.) random variables. Let

, then where is the sign of . Now

we have

(3)

We obtain an estimate of by minimizing the sum of squared

errors, i.e., through the least-squares (LS) method [1], [13]

(4)

where is the th element of the th user’s signature wave-

form. The Euclidean norm is a measure of dispersion

used to minimize the power of noise by minimizing the sum of

squared residuals in (4). This measure is suitable for Gaussian

noise, but the performance of a detector using this measure de-

teriorates in non-Gaussian noise models [13]. In the robust mul-

tiuser detector, the Huber’s proposal in [23] is employed to min-

imize the sum of a less rapidly increasing function of

residuals in non-Gaussian environments [13]

(5)

where is defined as

(6)

in which the index in refers to the Huber penalty func-

tion, and values of and , depend on the distribution of additive

noise. It has been shown in [29] that nonparametric methods can

be based on regression with an intercept parameter. Therefore,

we now modify the system model in such a way that the result

would be useful for nonparametric detection.

B. The Modified System Model for Nonparametric Multiuser

Detection

We modify the system model in (3) to obtain a system model

based on regression with an intercept parameter. This enables

us to use nonparametric regression to estimate the data vector

by estimating the intercept parameter. In (3), we center the

matrix to obtain by

(7)

where the scalar is the arithmetic mean

of the signature vector elements of the th user and is a

vector whose elements are all equal to 1, respectively.

We rewrite (3) as

(8)

where is a scalar. In (8), is not an in-

dependent intercept parameter needed in nonparametric regres-

sion, because it is a function of [29], In what follows, we obtain

an estimate of that is independent of (i.e., location free).

Definition 1: Let be the dispersion function that satis-

fies the following two properties for every and :

-

-

then is called an even and location-free dispersion

function.

In this case, we use (7) and (8) to write

(9)

Hence, we can use and interchangeably in . We min-

imize as a function of (8) to obtain an estimate of .

Thus, our modified model, which is a simple regression model,

is

(10)

Note that since we use the even and location free dispersion

function, the model (10) is also based on regression through

the origin. In [29], it is shown that in general, even and loca-

tion-free dispersion functions cannot be used in the regression

through the origin. Then, we transform (10) into a modified

system model for nonparametric regression, which needs the in-

tercept parameter, and write

(11)

where the true is 0. Let and assume and

denote the column spaces of and respectively. Let

, denote a fitted value based on the fit model

(11). Note that , lies in the space of . Since the space

does not include then . To obtain a fitted value

that lies in the column space of , i.e., in the desired space

, we project on to the space . Then is the

projection of this fitted value on to the desired space , where

. Since each user’s signature waveform

is independent of other users’ signature waveforms, has a full

rank , and so has . Thus the inverse of exists and
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then exists. Our estimate of is denoted by , which is a

solution to . Now, lies in the column space

of , We thus have

(12)

Since is available, we need an estimate of and to obtain

an estimate of . In order to compute as a function of , and

we modify (10) and write

(13)

Note that (8) and (13) are different models of the same ob-

servation, and as such are not identical. Also note that while in

this specific model and thanks to (7), the columns of and the

subspace spanned by are orthogonal, for other models for

regression through the origin [29] which do not center the ma-

trix , the columns of modified are not orthogonal to and

all such models can be used with (11) and (12). Thus, in general

since is independent of while is not independent of ,

we proceed with (13) and estimate . We use an even and lo-

cation free dispersion function to estimate and the intercept

parameter in (13). We obtain an estimate of by minimizing

an even and location free dispersion function of residuals.

This function is based on rank pseudonorm that is discussed in

Section III.

III. NONPARAMETRIC MULTIUSER DETECTION

In this section, we propose and analyze a nonparametric mul-

tiuser detector in CDMA channels with non-Gaussian ambient

noise. We start by presenting some basic notions of nonpara-

metric linear regression and pseudonorm from [29] and [30] that

are needed for estimating in (13).

A. Definition and Characteristics of Pseudonorm

We use Definition 1 to introduce a distance measure (in

terms of norms) that is invariant to a uniform shift in location.

A pseudonorm, as defined below, has this property.

Definition 2: An operator , is a pseudonorm if for

and , the following four conditions are

satisfied:

(14-1)

(14-2)

(14-3)

(14-4)

A regular norm satisfies the first three properties, but the

fourth one forces the norm of any vector with equal elements to

zero. Consider the -dimensional vectors ,

and the scalar . The following inequalities establish the

invariance of pseudonorms to any uniform shift in location:

(15)

Hence, .

Now we define a rank pseudonorm as

(16)

where denotes the rank of among

are scores such that ,

and [29].

Theorem 1: Suppose

, and . Then the function

is a pseudonorm.

Proof: See Appendix A

We repeat the following as presented by Hettmansperger

and McKean [29] for easy reference here. If a set of scores

satisfy conditions of Theorem 1, then an estimation that uses

pseudonorms (called rank estimation or R-estimation) can be

obtained. We obtain such estimation by using a general rank

score of the form

(17)

where is a bounded, nondecreasing, and differentiable

function defined on the interval (0, 1) that satisfies

(18)

Normalization of scores in (18) is for convenience. Wilcoxon

scores [29], [30] are generated in this way by the linear func-

tion and sign scores are generated by

. For scores generated by , we denote

the corresponding pseudonorm by

(19)

B. Rank Estimation Using Pseudonorm

Now we define an even and location-free dispersion function

based on pseudonorms that produces a rank es-

timate of . We denote the R-estimate of by which is

(20)

where is a pseudonorm based on (18) and (19). Since

is expressed in terms of norm, it is a continuous and

convex function of as stated in [30].

Jaeckel in [31] points out that if is a full rank matrix, then

attains its minimum. Since has full column

rank , then in (20) may be taken to be a value that mini-

mizes . In order to minimize , we

need to compute its gradient [30] as

(21)

where

(22)

(23)
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and is the th column of . Thus

(the R-estimate of is the solution to the following equations

(also called R-normal equations):

(24)

If noise has a symmetric distribution (i.e., the

R-estimate would be unbiased for all sample sizes of [29].

We assume that the noise density function is absolutely con-

tinuous, and the Fisher Information as denoted by satisfies

the following:

(25-1)

where . These assumptions

imply that is uniformly bounded and uniformly contin-

uous. We rewrite as . and from

[29] we know that for any given noise model, if the score is

, then an estimate of , with

the minimum error is obtained by the rank detector that uses

this score, where is the cumulative distribution function

(cdf) of noise [29]. We further assume

(25-2)

where is a positive definite matrix. We also assume that the

Noether’s condition, as stated below is imposed

(25-3)

where is they th element of the th column of . In a

CDMA system, the norm of users’ signature vectors are linearly

independent from one another, normalized and bounded, which

implies that (25-2) and (25-3) are satisfied.

Now we will show that is approximately

quadratic. Suppose

(26)

where is an estimate of , and

(27)

is a scale parameter. Note that depends on and , so

it cannot be used to estimate . As we will show, is quite

useful for establishing the asymptotic properties of R-estimates.

It will also lead us to a Gauss-Newton type algorithm for ob-

taining the R-estimate. Theorems (3.5.2)–(3.5.6) in [29] show

that provides a local asymptotic approximation to ,

and if minimizes the quadratic function , then under

conditions (18), (25-1), (25-2), and (25-3) we have

, where is the R-estimate of and means

the limit in probability.

Furthermore, in [29] it is shown that under conditions (18),

(25-1), (25-2), and (25-3), we have

where is the R-estimate of , and

is the dimensional Gaussian distribution. Now, if

the variance of noise is finite, it is further shown in [29]

that the Least-Squares (LS) estimate of (denoted by

satisfies . Hence,

the asymptotic efficiency of the R-estimate relative to the

Least-Square (LS) estimate is . If the pdf of noise is

, the asymptotic relative efficiency (ARE) of the Wilcoxon

detector relative to the LS-estimator [32] is

(28)

For example, if the noise is standard Gaussian, the asymp-

totic relative efficiency is 0.955. For longer-tailed noise

distributions this efficiency is higher. In other words, the

efficiency of Wilcoxon detector is better than that of the LS

detector in impulsive noise. Lehmann [32] has shown that

for all pdfs of noise. Also Huber [23]

has shown that ,

where is the robust minimax estimate of and

, in which is

(29)

where is the noise variance and is a parameter that depends

on the noise model. The ARE of the nonparametric detector to

the robust detector is .

C. Implementation of the Rank-Based Estimator

Now we consider four issues that are involved in the synthesis

of our proposed nonparametric multiuser detector. We begin by

estimating the scale parameter , which we will use later to

construct the rank based estimator in (35).

1) Estimates of the Scale Parameter : In order to estimate

an estimate of is needed. As we explain below, we use

(33)–(35) to estimate and update in an iterative manner.

We also use the score function defined in (17) to form our

estimator in the following manner. Consider the standard score

function

(30)

Recall from (27) that , where

(31)

We define as

(32)

where is an indicator function such that if is true then

otherwise ; and is the

estimated residual vector (i.e., . Then
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is the th least element of . Let denote the

quintile of (i.e., ). Our estimate of as in

[29] is

(33)

It is quite complicated to use and compute . In

[29] it is noted that we have to estimate (denoted by

), which is the derivative of at . For a small

(near zero) value of , we note that

would approximately be equal to

. In our simulations, we set and , which

correspond to a small value . The consis-

tency of the above estimation is shown in [33].

From the above, we conclude that is a consis-

tent estimate of . In all cases it has been found [29] that the

following simple degree of freedom correction is useful, which

we have used in our simulations:

(34)

2) Iterative Algorithms for Obtaining the R-Estimate of

: As stated earlier, the dispersion function

is a continuous convex function of . Thus, gradient-type

algorithms, such as the steepest descent, can be used to min-

imize , but they are often slow. The following

algorithm [29] is a Newton-type algorithm, which is based on

the asymptotic quadraticity of , and needs an

initial estimate of (denoted by ). Let

denote the initial estimate of residuals and let denote the

initial estimate of from (33). From (26) (i.e., the quadratic

approximation of ), the estimate of that

minimizes is

(35)

where is the iteration number. In practice, we

want to know if is less than

before proceeding further. In Appendix B, we prove the conver-

gence of this algorithm and show that when is large, for any

we have

(36)

where denotes a value that minimizes .

In comparison with robust multiuser detection, nonpara-

metric methods need to perform additional computations for

in (35), and to sort and rank the elements

of residuals.

3) Estimation of the Intercept Parameter : In estimating

the value of intercept parameter, the median of residuals has an

important role. If is the median of residuals

(37)

where is the residual vector, then as shown in

[29], we have , in which

is the one dimensional Gaussian distribution,

and is the median of noise distribution, i.e., .

This implies that is an unbiased estimate of .

4) Estimation of Data Vector : Now, by using (12), (13),

(35), and (37) we get

(38)

In order to compute in (24), we can use the matrix of sig-

nature waveforms instead of . This is due to the “location

free” feature of the dispersion function .

IV. BLIND NONPARAMETRIC MULTIUSER DETECTION

In order to detect data vectors, we need signature waveforms

of all users. This information is available at the base station,

but not at a user terminal. Thus, we need a method, called blind

multiuser detection, which does not require any information on

other users at a given user’s terminal. In recent years, the sub-

space approach, also known as subspace tracking, has been used

to develop simple blind algorithms [34]. We will use such algo-

rithms to construct our blind nonparametric multiuser detector.

For subspace estimation, we use the Projection Approxi-

mation Subspace Tracking with deflation (PASTd) algorithm

[35]–[37]. Several methods have been proposed in [38]–[42]

to improve the performance of this algorithm. Here, we briefly

present a few notations on this algorithm, and refer the inter-

ested reader to [35]–[37] for a more detailed description and

analysis.

For convenience and without loss of generality, we assume

that the signature waveforms of all users are linearly

independent from each other. The autocorrelation matrix of the

received signal is

(39)

where is the variance of

noise, and is the identity matrix. By performing an eigen

decomposition of matrix , we get

(40)

where . In (40),

contains largest eigenvalues

of in descending order, contains

the corresponding orthonormal eigenvectors, ,

and contains the

orthonormal eigenvectors that correspond to the eigenvalue

. It is easy to see that . The range

space of is called the signal subspace and its orthogonal

complement, the noise subspace, is spanned by .

Now we use the PASTd algorithm [35] for blind nonpara-

metric multiuser detection. Using (39) and (40) it has been
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shown in [13] that there is a vector such

that

(41)

and from [13] we obtain

(42)

Hence, the system model is

(43)

where . We use a procedure similar to

the one that we used in (7)–(13) to write

(44)

where is the centered

is a scalar, is a vector and the scalar is

the arithmetic mean of corresponding eigenvector elements of

the th user. We employ nonparametric methods to estimate

and in (45) as follows:

(45)

where is the iteration number and is

the gradient of dispersion function of residuals;. We can use a

procedure similar to the one in the Appendix B to show that if

then , where , is the R-estimate of .

Also, for an estimate of , we have

(46)

Now, we use the same notion as in (38) and write

(47)

We use the PASTd Algorithm [34], [35] to estimate

the signal subspace coordinates , as denoted by

. If we ignore in (42), the sen-

sitivity of our estimator to errors in estimating the parameters

will be reduced [13]. Also, since

in (42) is positive, it does not affect the sign of , and so we

can write

(48)

Equation (48) provides a blind estimate of the th user’s data.

In Section V, we explain the behavior of our nonparametric

detectors using simulation results.

V. SIMULATION RESULTS

In this section, we compare the performances of nonpara-

metric multiuser detectors and robust (minimax) multiuser de-

tector in the presence of non-Gaussian noise. We consider a

synchronous system in which the spreading sequence for each

user is a shifted -sequence. For robust multiuser detection,

Fig. 1. Probability of error versus SNR for the robust multiuser detector in
Gaussian noise for user 1 for the exact value of noise variance and for the
estimated variance.

we note that the “approximate” minimax decorrelating detector

converges [13], and so we simulate its performance. In all sim-

ulations we assume that the signature vectors’ lengths are

and there are 6 users in a cell, i.e., . All users have the

same power, i.e., perfect power control.

In Fig. 1 we show the bit error rate (BER) of the robust mul-

tiuser detector versus the signal-to-noise ratio (SNR). The SNR

is the ratio of signal power to the noise variance. If the variance

of noise is unknown, we need to estimate it. As can be seen in

Fig. 1, this would result in degradation in the performance of

robust detector particularly for large values of SNR.

For the robust detector, Wang and Poor in [13] used

in (29), where is the noise variance. For Gaussian

or nearly Gaussian noise, this is accurate. But, our simulations

show that for some non-Gaussian noise, this is not the case. For

the Laplacian noise, with the following pdf:

(49)

the value of should be . Fig. 2 shows performance degra-

dation of the robust (minimax) detector for in the

Laplacian noise, which indicates that the value of depends on

the noise model.

Fig. 3 shows the performance of various detectors in the pres-

ence of Gaussian noise. It is shown that the performance of the

nonparametric Wilcoxon detector closely follows that of the op-

timum detector in Gaussian noise, but has a maximum loss of

about 0.4 dB compared to the decorrelator for SNR of about

8 dB.

In our simulations, we also use the Gaussian mixture noise

with the following cdf:

(50)

where is the probability of impulse noise, is the zero

mean one-dimensional Gaussian cdf with variance that rep-

resents the background noise, and is the impulsive

part of noise. This is an approximation to the Middleton (Class
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Fig. 2. Probability of error versus SNR for the robust multiuser detector in
Laplacian noise for user 1 and for two values of � in (33).

Fig. 3. Probability of error versus SNR for user 1 in the robust (minimax)
detector, the Wilcoxon detector, the sign detector, and the decorrelator detector
in a synchronous CDMA channel with Gaussian noise.

A) model for impulsive noise [8]–[10]. Fig. 4 shows the perfor-

mances of various detectors in impulsive noise with

and .

It shows that the Wilcoxon (nonparametric) detector has a

good performance and closely follows the robust (minimax) de-

tector. Note that nonparametric Wilcoxon and sign detectors do

not use any a priori information on noise, but nevertheless the

performance of Wilcoxon detector is very close to that of the

robust detector in such impulsive noise environments.

Fig. 5 shows the performances of various detectors in heavy

tailed (i.e., highly impulsive) noise with and .

It shows that the Wilcoxon detector has more than 3 dB gain

compared to the robust (minimax) detector when the signal-to-

noise ratio is more than 0 dB. The nonparametric Wilcoxon

detector has a good performance compared to parametric de-

tectors without any information on impulsive noise. Poor and

Tanda [19] have shown that the robust (minimax) detector has

Fig. 4. Probability of error versus SNR for user 1 in the robust (minimax)
detector, the Wilcoxon detector, the sign detector, and the decorrelator detector
in a synchronous CDMA channel with impulsive noise where """ = 0:01 and
��� = 100.

Fig. 5. Probability of error versus SNR for user 1 in the robust (minimax)
detector, the Wilcoxon detector, the sign detector, and the decorrelator detector
in a synchronous CDMA channel with impulsive noise where " = 0:1 and
� = 100.

the best performance compared to all other suboptimum detec-

tors known to them. However, we have shown here that in highly

impulsive noise environment, our proposed nonparametric de-

tector has a noticeable improvement compared to the robust

(minimax) detector, and as such excels the performance of all

known suboptimum detectors in such environments.

As stated earlier, signature vectors of interfering users in the

downlink are unknown, which means that we have to use a

blind multiuser detector. Fig. 6 shows the performance of the

blind version of the same detectors in Gaussian noise using the

subspace approach in [34]. It verifies that the performances of

blind Wilcoxon detector in a Gaussian environment is margin-

ally close to that of the blind robust detector.

Fig. 7 shows the performance of blind multiuser detectors in

highly impulsive noise (i.e., and ). It shows
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Fig. 6. Probability of error versus signal-to-noise ratio (SNR) for user 1 in the
blind robust (minimax), the blind Wilcoxon and the blind sign detectors in a
synchronous CDMA channel with Gaussian noise using subspace tracking.

Fig. 7. Probability of error versus SNR for user 1 in the blind robust
(minimax), the blind Wilcoxon, and the blind sign detectors in a synchronous
CDMA channel with impulsive noise where " = 0:1 and � = 100.

good performances of blind nonparametric detectors compared

to the blind robust detector, where the blind Wilcoxon and the

blind sign detectors have about 2 dB gain over the blind robust

detector.

VI. CONCLUSION

In this paper, we have developed a nonparametric multiuser

detector for non-Gaussian noise environments. Performances of

our proposed detectors are comparable to or better than that of

the robust detector in the presence of non-Gaussian or impul-

sive noise. This is achieved without any a priori information

on the noise model. The same is true for cases in which noise

is Gaussian. For blind cases, the performance of our proposed

Wilcoxon detector, is almost identical to that of the blind robust

detector in Gaussian noise, but is even better in non-Gaussian

environments.

Compared to robust multiuser detection, nonparametric

methods need to perform additional computations for

in (35), and to sort and rank the elements of

the residuals. These additional computations are the marginal

cost of nonparametric multiuser detectors methods that do

not require any a priori knowledge on the ambient noise as

compared to robust multiuser detectors. For a nonparametric

detector with lower computation complexity, see [43].

APPENDIX A

PROOF OF THEOREM 1

We repeat a partial proof of Theorem 1 from [30], and provide

additional material to construct a complete proof. We note the

relation between rank and order statistics, and rewrite (16) as

(A.1)

where are the ordered values of

. Next, suppose that is the last order

statistic with a negative score. Since scores sum to 0, we write

(A.2)

Both terms on the right-hand side of (A.2) are nonnegative,

hence, . If , then all terms in (A.2) are zero.

But since all scores are not and , we must

have . Conversely if

, then . From , it fol-

lows that . In order to prove this, we note that

if then and hence,

. But, if then . Thus

(A.3)

The equality is obvious for . To complete the proof, we

show that the triangular inequality holds.

(A.4)

Furthermore, by summing through another index, we write

(A.5)
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where is a permutation of integers .

Suppose is not in order, then there exist a and a such that

, but . Thus

(A.6)

Therefore, such an interchange never decreases the sum. This

leads to

(A.7)

A similar result also holds for

(A.8)

Therefore, the triangular inequality is proved and the proof of

Theorem 1 is completed.

APPENDIX B

PROOF OF THE CONVERGENCE OF ALGORITHM (35)

Now we prove the convergence of our iterative algorithm.

This algorithm needs an initial estimate which we denote by

. Let denote the initial residuals. From

(32) and (33), and using , we obtain an initial estimate of

(denoted by . which according [33], is a consistent estimate

of based on the residual vector . From (35), we have

(B.1)

We recall (35) and write

(B.2)

where is the consistent estimate of based on the residual

vector [33]. From (26) and for we

have

(B.3)

From [29, pp. 412], we note that for any and we

have

(B.4)

Then, for large values of , we have

, so

(B.5)

Now we show that .

From (B.2), we have

(B.6)

We use (B.5) and (B.6) to write

(B.7)

Note that because is a nondecreasing function, then from

(32) and (33) we conclude that is positive. Furthermore,

since has full rank , then also has full rank. Con-

sequently, the right-hand side of (B.7) cannot be positive.

Therefore

(B.8)

If . then from

(B.7) we have

(B.9)
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This implies that , which is because

has full rank. Then (i.e., an R-estimate of ) min-

imizes . Alternatively, if

, then

(B.10)

Because is convex and continuous, it has a

unique minimum. We conclude that ap-

proaches this unique minimum, i.e.,

(B.11)

In other words, if then converges to the unique

minimum of .
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