New bounds on the independence number of connected graphs

Nader Jafari Rad∗‡ and Elahe Sharifi†

∗Department of Mathematics, Shahed University, Tehran, Iran
†Department of Mathematics, Shahrood University of Technology

Shahrood, Iran
‡n.jafarirad@gmail.com

Received 17 October 2016
Revised 14 August 2017
Accepted 24 August 2018
Published 18 September 2018

The independence number of a graph G, denoted by $\alpha(G)$, is the maximum cardinality of an independent set of vertices in G. [Henning and Löwenstein An improved lower bound on the independence number of a graph, Discrete Applied Mathematics 179 (2014) 120–128.] proved that if a connected graph G of order n and size m does not belong to a specific family of graphs, then $\alpha(G) > \frac{5}{8}n - \frac{1}{4}m$. In this paper, we strengthen the above bound for connected graphs with maximum degree at least three that have a non-cut-vertex of maximum degree. We show that if a connected graph G of order n and size m has a non-cut-vertex of maximum degree then $\alpha(G) \geq \frac{5}{8}n - \frac{1}{4}(m - \Delta(G)) - \frac{11}{12}$, where $\Delta(G)$ is the maximum degree of the vertices of G. We also characterize all connected graphs G of order n and size m that have a non-cut-vertex of maximum degree and $\alpha(G) \leq \frac{5}{8}n - \frac{1}{4}(m - \Delta(G)) - \frac{2}{3}$.

Keywords: Transversal; independence; maximum degree.

Mathematics Subject Classification 2010: 05C69

1. Introduction

In this paper, we study the independence number and the transversal number in graphs. Let $G = (V, E)$ be a simple graph with vertex set $V = V(G)$ and edge set $E = E(G)$. We denote by $n(G)$ and $m(G)$, or just n and m if G is specified, the order and size of G, respectively. For a vertex $v \in V(G)$, let $N_G(v) = \{u \mid uv \in E(G)\}$ denote the open neighborhood of v and $N_G[v] = \{v\} \cup N_G(v)$ denote the closed neighborhood of v. The degree of a vertex v, $\deg_G(v)$, or just $\deg(v)$, in a graph G is the number of neighbors of v in G. We refer to $\Delta(G)$ and $\delta(G)$ as the maximum degree and the minimum degree of the vertices of G, respectively. A vertex v in a

†Corresponding author.
connected graph G is called a cut-vertex if $G - v$ is disconnected. A 2-connected graph is a connected graph with no cut-vertex.

A set S of vertices in a graph G is an independent set if no pair of vertices of S are adjacent. The independence number of G, denoted by $\alpha(G)$, is the maximum cardinality of an independent set in G. An independent set of cardinality $\alpha(G)$ is called an $\alpha(G)$-set. A vertex covers an edge if it is incident with the edge. A transversal in G is a set of vertices that covers all the edges of G. We remark that a transversal is also called a vertex-cover in the literature. The transversal number of G, denoted by $\tau(G)$, is the minimum cardinality of a transversal in G. A transversal of cardinality $\tau(G)$ is called a $\tau(G)$-set.

We denote by C_n, P_n and K_n the cycle, the path, and the complete graph of n vertices, respectively.

2. Known Results

The following observation is well known.

Observation 1. For any graph G of order n, $\alpha(G) + \tau(G) = n$.

The independence number is one of the most fundamental and well-studied graph parameters (see, for example, [2–16, 18–23, 25, 26]). Many researchers considered graphs with special conditions. Griggs [10] improved the well-known Caro-Wei bound [4, 26] for triangle-free graphs not including odd paths or cycles. Jones [20] considered triangle-free graphs with maximum degree at most four. Heckman and Thomas [17] provided a short proof for the result conjectured by Albertson, Bollobás and Tucker [1] and originally proved by Staton [24] that every triangle-free graph G of maximum degree at most three has an independent set of cardinality at least $5\alpha(G)/14$. Harant et al. [13] extended the result of Heckman and Thomas about the independence number of triangle-free graphs of maximum degree at most three to the case of graphs which may contain triangles.

Recently, Henning and Löwenstein [18] showed that if G does not belong to a specific family of graphs, \mathcal{G}, then $\alpha(G) > \frac{2}{3}n - \frac{1}{4}m$. Further, they characterized all graphs G for which $\alpha(G) \leq \frac{2}{3}n - \frac{1}{4}m$. For these purposes, Henning and Löwenstein [18] defined a family \mathcal{G} of graphs. They denoted by K_4^* the graph obtained from K_4 by subdividing one edge of the graph twice. In this paper, we call each of the vertices of degree two of K_4^* a divider vertex.

For $t \in \{2, 3, 4\}$ they defined a K_t-unit to be a graph isomorphic to K_t. Further, a graph isomorphic to C_5 and K_4^* they called a C_5-unit and a K_4^*-unit, respectively. A unit is a F-unit for some graph $F \in \{K_2, K_3, K_4, C_5, K_4^*\}$.

Let $\mathcal{G}_{2,1}$ be the family of connected graphs G that can be obtained from $k \geq 1$ disjoint K_3-units by adding $k-1$ edges. They noted that each added edge is a bridge of G. Let $\mathcal{G}_3 = \mathcal{G}_{3,1}$.

For $k \geq 1$, let \mathcal{G}_{2} be the family of connected graphs that can be obtained from a K_4-unit and $k-1$ disjoint K_3-units by adding $k-1$ edges. Let $\mathcal{G}_2 = \mathcal{G}_{2,1}$.
For \(k \geq 2 \), let \(\mathcal{G}_{1,1} \) be the family of connected graphs that can be obtained from two disjoint \(K_4 \)-units and \(k - 2 \) disjoint \(K_3 \)-units by adding \(k - 1 \) edges. For \(k \geq 1 \), let \(\mathcal{G}_{1,2} \) be the family of connected graphs that can be obtained from a \(K_2 \)-unit and \(k - 1 \) disjoint \(K_3 \)-units by adding \(k - 1 \) edges. For \(k \geq 1 \), let \(\mathcal{G}_{1,3} \) be the family of connected graphs that can be obtained from a \(C_5 \)-unit and \(k - 1 \) disjoint \(K_3 \)-units by adding \(k - 1 \) edges. Let

\[
\mathcal{G}_1 = \bigcup_{i=1}^{3} \mathcal{G}_{1,i}.
\]

For \(k \geq 3 \), let \(\mathcal{G}_{0,1} \) be the family of connected graphs that can be obtained from three disjoint \(K_4 \)-units and \(k - 3 \) disjoint \(K_3 \)-units by adding \(k - 1 \) edges. For \(k \geq 2 \), let \(\mathcal{G}_{0,2} \) be the family of connected graphs that can be obtained from the disjoint union of a \(K_2 \)-unit, a \(K_4 \)-unit and \(k - 2 \) disjoint \(K_3 \)-units by adding \(k - 1 \) edges. For \(k \geq 2 \), let \(\mathcal{G}_{0,3} \) be the family of connected graphs that can be obtained from the disjoint union of a \(K_2 \)-unit, a \(K_4 \)-unit and \(k - 2 \) disjoint \(K_3 \)-units by adding \(k - 1 \) edges. For \(k \geq 1 \), let \(\mathcal{G}_{0,4} \) be the family of connected graphs that can be obtained from the disjoint union of a \(K_3 \)-unit and \(k - 1 \) disjoint \(K_3 \)-units by adding \(k - 1 \) edges. For \(k \geq 3 \), let \(\mathcal{G}_{0,5} \) be the family of connected graphs that can be obtained from \(k \) disjoint \(K_3 \)-units by adding \(k \) edges. Let

\[
\mathcal{G}_0 = \bigcup_{i=1}^{5} \mathcal{G}_{0,i}.
\]

Finally, they defined the infinite family \(\mathcal{G} \) of graphs by

\[
\mathcal{G} = \bigcup_{i=0}^{3} \mathcal{G}_i.
\]

A graph in the family \(\mathcal{G} \) is illustrated in Fig. 1.

Theorem 2 (Henning and Löwenstein, [18]). Let \(G \) be a connected graph of order \(n \) and size \(m \). Then the following holds.

1. If \(G \notin \mathcal{G} \), then \(\tau(G) < \frac{1}{3}n + \frac{1}{3}m \) and \(\alpha(G) > \frac{2}{3}n - \frac{1}{3}m \).
2. If \(G \in \mathcal{G}_i \) where \(i \in \{0, 1, 2, 3\} \), then \(\tau(G) = \frac{1}{3}n + \frac{1}{3}m + \frac{1}{12} \) and \(\alpha(G) = \frac{2}{3}n - \frac{1}{3}m - \frac{1}{12} \).

![Fig. 1. A graph in the family \(\mathcal{G}_1 \).](image-url)
Our aim in this paper is to present new bounds for the independence number of a graph that has a non-cut-vertex with maximum degree. Note that infinite families of graphs have the non-cut-vertex condition, such as 2-connected graphs.

Our results improve Theorem 2 for graphs with maximum degree at least 3. We note that the study of the independence number for graphs with maximum degree at least 3 is of sufficient interest, since for graphs with maximum degree at most two (paths and cycles) the independence number is clear.

3. Families of Graphs

We first present some definitions and a new infinite family of graphs based on the family \mathcal{G}. For a graph $G \in \mathcal{G}$, a bridge-alternating path is a path that alternates between edges in units and bridges in G. The units that have an edge in a bridge-alternating path P are called to be saturated by P, or just P-saturated units. A bridge-alternating path whose end edges are not bridge is an bridge-augmenting path. For a bridge-alternating path $P = v_0, v_1, \ldots, v_l$, we denote by $\text{Unit}_s(P)$ the set of vertices in the P-saturated units. Denote $N_s(P) = \text{Unit}_s(P) \cup \{v_1, \ldots, v_{l-1}\}$.

We now define an infinite family of graphs based on the family \mathcal{G} as follows.

For $i \in \{0, 1, 2, 3\}$, $j \in \{1, 2, 5\}$ with $(i, j) \notin \{(1, 5), (2, 2), (2, 5), (3, 2), (3, 5)\}$, let $\mathcal{H}_{i,j}$ be the family of connected graphs G that G is obtained from a graph $G_0 \in \mathcal{G}_{i,j}$ by adding a new vertex x and joining x to some vertices of G_0 such that x has maximum degree in G, and there is an integer $k_G \geq 1$ such that the following procedure holds.

Procedure \mathcal{A}.

Step 1: There exists a bridge-augmenting path $P^1(x_0) : x_0 = v^1_0, \ldots, v^1_{2i+1} \in G_0$ such that if $k_G = 1$ then $N_s(P^1(x_0)) \subseteq N_G(x)$, and if $k_G > 1$ then $I_1(x_0) \neq \emptyset$, where $I_1(x_0) = N_s(P^1(x_0)) \setminus N_G(x)$ and the following Step 2 holds.

Step 2: For any vertex $x_1 \in I_1(x_0)$, there exists a bridge-alternating path $P^2(x_1) : x_1 = v^2_1, \ldots, v^2_{2l+1} \in G_0$ such that $v^2_1v^2_2$ is a bridge of G_0, if $k_G = 2$ then $N_s(P^2(x_1)) \subseteq N_G(x)$ for all $x_1 \in I_1(x_0)$, and if $k_G > 2$ then $I_2(x_1) \neq \emptyset$ for some $x_1 \in I_1(x_0)$, where $I_2(x_1) = N_s(P^2(x_1)) \setminus N_G(x)$ and the following Step 3 holds for all $x_1 \in I_1(x_0)$ such that $I_2(x_1) \neq \emptyset$.

Step 3: For any vertex $x_{k-1} \in I_{k-1}(x_{k-2})$, there exists a bridge-alternating path $P^k(x_{k-1}) : x_{k-1} = v^k_1, \ldots, v^k_{2l+1} \in G_0$ such that $v^k_1v^k_2$ is a bridge of G_0, if $k_G = k$ then $N_s(P^k(x_{k-1})) \subseteq N_G(x)$ for all $x_{k-1} \in I_{k-1}(x_{k-2})$, and if $k_G > k$ then $I_k(x_{k-1}) \neq \emptyset$ for some $x_{k-1} \in I_{k-1}(x_{k-2})$, where $I_k(x_{k-1}) = N_s(P^k(x_{k-1})) \setminus N_G(x)$, and the Step $k+1$ holds for all $x_{k-1} \in I_{k-1}(x_{k-2})$ such that $I_k(x_{k-1}) \neq \emptyset$.

We note that the final step of the Procedure \mathcal{A} is as follows: For any vertex $x_{k_G-1} \in I_{k_G-1}(x_{k_G-2})$, there exists a bridge-alternating path $P^{k_G}(x_{k_G-1}) : x_{k_G-1} = v^{k_G}_1, \ldots, v^{k_G}_{2l+1} \in G_0$ such that $v^{k_G}_1v^{k_G}_2$ is a bridge of G_0, and if $k_G > k$ then $I_{k_G}(x_{k_G-1}) \neq \emptyset$ for some $x_{k_G-1} \in I_{k_G-1}(x_{k_G-2})$, where $I_{k_G}(x_{k_G-1}) = N_s(P^{k_G}(x_{k_G-1})) \setminus N_G(x)$, and the Step k_G+1 holds for all $x_{k_G-1} \in I_{k_G-1}(x_{k_G-2})$ such that $I_{k_G}(x_{k_G-1}) \neq \emptyset$.
New bounds on the independence number of connected graphs

Fig. 2. Some graphs in the family \(\mathcal{H}_3 \) obtained by Procedure \(\mathcal{A} \), letting \(G_0 \) be the graph shown in Fig. 1.

\[x_{kG-1} = v_1^{kG}, \ldots, v_2^{kG+1} \] in \(G_0 \) such that \(v_1^{kG}, v_2^{kG} \) is a bridge of \(G_0 \), and \(N_i(P^{kG}(x_{kG-1})) \subseteq N_G(x) \) for all \(x_{kG-1} \in I_{kG}(x_{kG-2}) \).

For \(i \in \{0, 1\} \), \(j \in \{3, 4\} \) with \((i, j) \neq (1, 4) \), let \(\mathcal{H}_{i,j} \) be the family of connected graphs \(G \) that \(G \) is obtained from a graph \(G_0 \in \mathcal{G}_{i,j} \) by adding a new vertex \(x \) and joining \(x \) to some vertices of \(G_0 \) such that \(x \) has maximum degree in \(G \), and there is an integer \(k_G \geq 1 \) such that at least one of the following procedures hold.

Procedure B. The Steps 1, \ldots, \(k_G \) of the Procedure \(\mathcal{A} \) hold subject to there is no \(P^{kG}(x-1) \)-saturated \(F \)-unit for \(F \in \{C_5, K_4^*\} \), in any Step 1 \(\leq k \leq k_G \).

Procedure C. There is a vertex \(x_0 \) of the \(F \)-unit, where \(F \in \{C_5, K_4^*\} \), such that if \(k_G = 1 \) then \(N_G[x_0] \cap V(F) \subseteq N_G(x) \), and if \(k_G > 1 \) then \(I_1(x_0) \neq \emptyset \), where \(I_1(x_0) = (N_G[x_0] \cap V(F)) \setminus N_G(x) \) and the Step 2, \ldots, \(k_G \) of the Procedure \(\mathcal{A} \) hold.

We now define an infinite family \(\mathcal{H} \) of graphs by

\[\mathcal{H} = \bigcup_{i=0}^{3} \mathcal{H}_i, \]

where \(\mathcal{H}_3 = \mathcal{H}_{3,1}, \mathcal{H}_2 = \mathcal{H}_{2,1}, \mathcal{H}_1 = \bigcup_{j=1}^{3} \mathcal{H}_{1,j} \), and \(\mathcal{H}_0 = \bigcup_{j=1}^{5} \mathcal{H}_{0,j} \). Some graphs in the family \(\mathcal{H} \) are illustrated in Fig. 2. As mentioned before, graphs in the family \(\mathcal{H} \) are constructed using graphs in the family \(\mathcal{G} \), but they have different structures.

4. Main Results

By the construction of the graphs in the family \(\mathcal{G} \), the following has an straightforward proof.

Observation 3. If \(G \in \{C_5, K_4^*\} \) then there is no \(\tau(G) \)-set containing the closed neighborhood of a vertex of \(G \).

Observation 4. If \(G \in \mathcal{G} \setminus \mathcal{G}_{0,5} \) then there is no cycle in \(G \) containing a bridge of \(G \).

The following can be obtained from Theorem 2. (See Appendix for proof).

Corollary 5. If \(G \in \mathcal{G} \), then every \(\tau(G) \)-set has exactly \(\tau(F) \) vertices from every \(F \)-unit in \(G \).
Proposition 6. Let G be a connected graph of order n and size m that has a non-cut-vertex of maximum degree. Then

$$
\tau(G) \leq \frac{1}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{11}{12}.
$$

Proof. Let G be a connected graph of order n and size m that has a non-cut-vertex x of maximum degree. Let $G_0 = G - x$. Then G_0 is a connected graph of order $n - 1$ and size $m - \Delta(G)$. By Theorem 2, we have

$$
\tau(G) \leq 1 + \tau(G_0)
$$

$$
\leq 1 + \frac{1}{3}(n - 1) + \frac{1}{4}(m - \Delta(G)) + \frac{1}{4}
$$

$$
= \frac{1}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{11}{12}.
$$

We shall prove the following result, a proof of which is given in Sec. 5.

Theorem 7. Let G be a connected graph of order n and size m that has a non-cut-vertex of maximum degree. Then the following hold.

(a) $\tau(G) = \frac{1}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{1}{4}(8 + i)$ (and thus $\alpha(G) = \frac{2}{9}n - \frac{1}{9}(m - \Delta(G)) - \frac{1}{3}(8 + i)$, where $i \in \{0, 1, 2, 3\}$, if and only if $G \in \mathcal{H}_i$.

(b) If $G \not\in \mathcal{H}_i$, then $\tau(G) < \frac{1}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{2}{3}$ (and thus $\alpha(G) > \frac{2}{9}n - \frac{1}{9}(m - \Delta(G)) - \frac{2}{3}$).

Note that a simple calculation shows that Theorem 7 improves Theorem 2 if $\Delta(G) \geq 3$. Also, clearly Theorem 7 holds for any 2-connected graph.

5. Proof of Theorem 7

We now prove Theorem 7. It is sufficient to prove (a).

(\Leftarrow) Let $G \in \mathcal{H}_i$, where $i \in \{0, 1, 2, 3\}$, be a graph of order n and size m. Thus G is obtained from a graph $G_0 \in \mathcal{G}_i$ by adding a new vertex x and one of the Procedures A, B and C. We show that no $\tau(G_0)$-set covers $E(G)$. On the contrary, let S be a $\tau(G_0)$-set that covers $E(G)$. We proceed with two cases according to the value of j which $G \in \mathcal{H}_{i,j}$.

Case I. $G \in \mathcal{H}_{i,j}$ for some $j \in \{1, 2, 5\}$, and $(i, j) \not\in \{(1, 5), (2, 2), (2, 5), (3, 2), (3, 5)\}$. Then G is obtained by Procedure A and each unit in G_0 is a K_t-unit, where $t \in \{2, 3, 4\}$.

Claim 1. $I_t(x_0) \subseteq S$.

Proof. By Step k_G, for any $x_{k_{t-1}} \in I_{k_{t-1}}(x_{k_{t-2}})$, there is a bridge-alternating path $P^G_{k_G}(x_{k_{t-1}}) : x_{k_{t-1}} = v_1^{k_G}, \ldots, v_{2t_{k_{t-1}}+1}^{k_G}$, such that $v_{2l}^{k_G} \in \mathcal{V}_{2l+1}^{k_G}$, where $1 \leq l \leq k_G$.
New bounds on the independence number of connected graphs

is an edge of a F_t^{kG}-unit, and $N_s(P_t^{kG}(x_{kG-1})) \subseteq N_G(x)$, for all $x_{kG-1} \in I_{kG-1}(x_{kG-2})$. Since S covers $E(G)$ and $x \notin S$, we deduce that $N_G(x) \subseteq S$. Then

$$N_s(P_t^{kG}(x_{kG-1})) \subseteq S. \quad (1)$$

Therefore, we have $N_G(v_{2kG-1}^{kG}) \cap N_s(P_t^{kG}(x_{kG-1})) \subseteq S$. Since the F_t^{kG}-unit is a K_t-unit, where $t \in \{2, 3, 4\}$, we have

$$|N_G(v_{2kG-1}^{kG}) \cap N_s(P_t^{kG}(x_{kG-1}))| = |V(F_t^{kG}) \setminus \{v_{2kG-1}^{kG}\}| = n(F_t^{kG}) - 1.$$

Therefore, by Corollary 5, $v_{2kG-1}^{kG} \notin S$. Since S covers the bridge $v_{2kG-1}^{kG} v_{2kG-2}^{kG}$, we find that $v_{2kG-1}^{kG} \notin S$. By (1), $N_G(v_{2kG-1}^{kG}) \cap N_s(P_t^{kG}(x_{kG-1})) \subseteq S$. Then we obtain that

$$\left(N_G(v_{2kG-1}^{kG}) \cap N_s(P_t^{kG}(x_{kG-1})) \right) \cup \{v_{2kG-1}^{kG}\} \subseteq S.$$

Since the F_t^{kG}-unit is a K_t-unit, where $t \in \{2, 3, 4\}$, we have

$$|\left(N_G(v_{2kG-1}^{kG}) \cap N_s(P_t^{kG}(x_{kG-1})) \right) \cup \{v_{2kG-1}^{kG}\}| = |V(F_t^{kG}) \setminus \{v_{2kG-1}^{kG}\}|$$

$$= n(F_t^{kG}) - 1.$$

Therefore, by Corollary 5, $v_{2kG-2}^{kG} \notin S$. Since S covers the bridge $v_{2kG-3}^{kG} v_{2kG-2}^{kG}$, we find that $v_{2kG-2}^{kG} \notin S$. Proceeding this argument for $N_G(v_{2kG+1}^{kG}) \cap N_s(P_t^{kG}(x_{kG-1}))$, $1 \leq l \leq l_{kG} - 2$, we obtain that $v_{2kG+1}^{kG} \notin S$. Hence, $x_{kG-1} = v_{kG}^{kG} \in S$. Then

$$I_{kG-1}(x_{kG-2}) \subseteq S. \quad (2)$$

For any $x_{kG-2} \in I_{kG-2}(x_{kG-3})$, there is a bridge-alternating path $P_{kG-1}(x_{kG-2})$: $x_{kG-2} = v_{kG-1}^{kG}, \ldots, v_{2kG+1}^{kG}$, such that $v_{2l+1}^{kG} v_{2l+2}^{kG}$, where $1 \leq l \leq l_{kG-1}$, is an edge of a F_t^{kG-1}-unit. (2) together with the fact that $N_G(x) \subseteq S$, implies that $N_s(P_{tG-1}(x_{kG-2})) \subseteq S$. Then

$$N_G(v_{2(kG-1)+1}^{kG}) \cap N_s(P_{tG-1}(x_{kG-2})) \subseteq S.$$

Since the F_t^{kG-1}-unit is a K_t-unit, where $t \in \{2, 3, 4\}$, we have

$$|N_G(v_{2(kG-1)+1}^{kG}) \cap N_s(P_{tG-1}(x_{kG-2}))| = |V(F_t^{kG-1}) \setminus \{v_{2(kG-1)+1}^{kG}\}|$$

$$= n(F_t^{kG-1}) - 1.$$

Therefore, by Corollary 5, $v_{2(kG-1)+1}^{kG} \notin S$. Since S covers the bridge $v_{2(kG-1)+1}^{kG} v_{2(kG-1)+2}^{kG}$, we have $v_{2(kG-1)+1}^{kG} v_{2(kG-1)+2}^{kG} \notin S$. Proceeding this argument for $N_G(v_{2(kG+1)}^{kG}) \cap N_s(P_{tG-1}(x_{kG-2}))$, $1 \leq l \leq l_{kG-1} - 1$, we obtain that $v_{2l-1}^{kG} \in S$. Hence, $x_{kG-2} = v_{kG-1}^{kG} \in S$. Then

$$I_{kG-2}(x_{kG-3}) \subseteq S. \quad (3)$$

An analogous argument similar those applied to prove (1), (2) and (3) yields that $I_{kG}(x_{kG-(k+1)}) \subseteq S$ for $1 \leq k \leq kG - 1$, as desired.
There is a bridge-augmenting path \(P^1(x_0) : x_0 = v_0^1, \ldots, v_{2l+1}^1 \), where \(v_{2l+1}^1 \) is an edge of a \(F^1 \)-unit. Claim 1 together with the fact that \(N_G(x) \subseteq S \), implies that \(N_s(P^1(x_0)) \subseteq S \). Since \(F_0^1 \)-unit is a \(K_1 \)-unit, where \(t \in \{2, 3, 4\}, V(F_0^1) = N_G(v_0^1) \). So by definition of \(N_s(P^1(x_0)) \), we have

\[
V(F_0^1) \setminus \{v_1^1\} = N_G[v_0^1] \cap N_s(P^1(x_0)) \subseteq S.
\]

(4)

Similar to the proof of Claim 1, we can see that for \(1 \leq l \leq l_1, v_{2l+1}^1 \in S \). Then \(v_1^1 \in S \). This together with (4) implies that \(V(F_0^1) \subseteq S \). This is a contradiction with Corollary 5.

Case II. \(G \in H_{i,j} \), where \(j \in \{3, 4\} \) and \((i,j) \neq (1,4) \). By Case I, we may assume that \(G \) is obtained by Procedure \(C \). The Steps 2, \ldots, \(k_2 \) of the Procedure \(C \) are identical to the steps in the Procedure \(A \). Then by Claim 1, we have \(I_1(x_0) \subseteq S \). Therefore, for a vertex \(x_0 \) in a \(F \)-unit, where \(F \in \{C_5, K_4^*\} \), we have \(N_G[x_0] \cap V(F) \subseteq S \). This is a contradiction with Observation 3.

By Case I, \(G \not\in H_{i,j} \), for \(j \in \{1, 2, 5\} \) and \((i,j) \notin \{(1,5), (2,2), (2,5), (3,2), (3,5)\} \), and by Case II, \(G \not\in H_{i,j} \), for \(j \in \{3, 4\} \) and \((i,j) \neq (1,4) \). Hence, \(G \not\in H \), a contradiction. Thus there is no \(\tau(G_0) \)-set that covers \(E(G) \). We deduce that \(\tau(G) = 1 + \tau(G_0) \). By Theorem 2, we have

\[
\tau(G) = 1 + \tau(G_0) \\
= 1 + \frac{1}{3}(n-1) + \frac{1}{4}(m - \Delta(G)) + \frac{i}{12} \\
= \frac{1}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{8+i}{12}.
\]

Consequently, by Observation 1, \(\alpha(G) = \frac{2}{3}n - \frac{1}{4}(m - \Delta(G)) - \frac{1}{2}(8+i) \).

(\(\Rightarrow\)) Let \(G \) be a connected graph of order \(n \) and size \(m \) that has a non-cut-vertex \(x \) of maximum degree and \(\tau(G) = \frac{2}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{2}{3}(8+i) \), where \(i \in \{0, 1, 2, 3\} \). We show that \(G \in H \). Let \(G_0 = G - x \). Then \(G_0 \) is a connected graph of order \(n-1 \) and size \(m - \Delta(G) \). Suppose that \(G_0 \not\in \mathcal{G} \). Then by Theorem 2,

\[
\tau(G_0) \leq 1 + \tau(G_0) < 1 + \frac{1}{3}(n-1) + \frac{1}{4}(m - \Delta(G)) \\
= \frac{1}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{2}{3},
\]

a contradiction, since \(\tau(G) \geq \frac{2}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{2}{3} \). Hence, \(G_0 \in \mathcal{G} \). Therefore, there is an integer \(j \in \{0, 1, 2, 3\} \) such that \(G_0 \in \mathcal{G}_j \).

Claim 2. There is no \(\tau(G_0) \)-set that covers \(E(G) \).

Proof. If there exists a \(\tau(G_0) \)-set that covers \(E(G) \), then \(\tau(G) = \tau(G_0) \). By Theorem 2, we have

\[
\tau(G) = \tau(G_0) = \frac{1}{3}(n-1) + \frac{1}{4}(m - \Delta(G)) + \frac{j}{12} = \frac{1}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{j-4}{12}.
\]

1850069-8
This implies that \(j - i = 12 \), which is impossible, since \(j - i \leq 3 \). Therefore, no \(\tau(G_0) \)-set covers \(E(G) \).

By Claim 2 and Theorem 2,

\[
\tau(G) = 1 + \tau(G_0) = \frac{1}{3}n + \frac{1}{4}(m - \Delta(G)) + \frac{8 + j}{12}.
\]

Therefore, \(i = j \), i.e., \(G_0 \in \mathcal{G} \).

We show that there is an integer \(k \) such that \(G \) is obtained from \(G_0 \) by Steps 1, 2, \ldots, \(k \) of one of the Procedures \(\mathcal{A}, \mathcal{B} \) and \(\mathcal{C} \). Let \(S \) be a \(\tau(G_0) \)-set that has maximum number of vertices of \(N_G(x) \) in the graph \(G \). By Claim 2, \(S \) does not cover \(E(G) \). So \(N_G(x) \setminus S \neq \emptyset \). Let \(v_0 \in N_G(x) \setminus S \), and let \(v_0 \) be a vertex of a \(F_1 \)-unit. Since the \(F_1 \)-unit is a connected graph of order at least two, then \(N_G(v_0) \cap V(F_1) \neq \emptyset \). Also,

\[
N_G(v_0) \cap V(F_1) \subseteq S,
\]

(5) since \(S \) covers \(E(G_0) \) and \(v_0 \notin S \). For each \(v \in N_G(v_0) \cap V(F_1), \) let \(S^v = (S \setminus \{v\}) \cup \{v_0\} \).

Claim 3. For every vertex \(v \in N_G(v_0) \cap V(F_1), \) \(N_G(v) \setminus S^v \neq \emptyset \).

Proof. Clearly, \(|S^v| = |S| = \tau(G_0)\), for any vertex \(v \in N_G(v_0) \cap V(F_1) \). Suppose that there is a vertex \(v \in N_G(v_0) \cap V(F_1) \) such that \(N_G(v) \setminus S^v = \emptyset \). Hence, \(v \notin N_G(x) \) and \(S^v \) covers \(E(G_0) \). Then \(S^v \) is a \(\tau(G_0) \)-set that has more vertices of \(N_G(x) \) than \(S \), a contradiction to the choice of \(S \). Therefore, for every vertex \(v \in N_G(v_0) \cap V(F_1), \) \(v \) is adjacent to \(x \) or \(S^v \) does not cover \(E(G_0) \). In other words, every vertex \(v \in N_G(v_0) \cap V(F_1) \) is adjacent to \(x \) or is adjacent to a vertex in \(V(G_0) \setminus S^v \).

Set \(I_{v_0} = (N_G(v_0) \cap V(F_1)) \setminus N_G(x) \). Let \(I_{v_0} = \emptyset \). Hence,

\[
N_G(v_0) \cap V(F_1) \subseteq N_G(x).
\]

(6) If \(F_0 \)-unit is a \(K_t \)-unit, where \(t \in \{2, 3, 4\} \), then the edge \(v_0v \), where \(v \in N_G(v_0) \cap V(F_1) \), is a bridge-augmenting path \(P^1(v_0) \) with length 1. Also, by (6),

\[
N_4(P^1(v_0)) = V(F_0) = N_G(v_0) \cap V(F_1) \subseteq N_G(x).
\]

Then \(G \) is obtained by Step 1 of Procedure \(\mathcal{A} \) or Procedure \(\mathcal{B} \). If \(F_0 \in \{C_5, K_4^*\} \),

then by (6), \(G \) is obtained by Step 1 of Procedure \(\mathcal{C} \). Therefore, \(G \in \mathcal{H}_t \) and the proof of the theorem is complete. Next assume that \(I_{v_0} \neq \emptyset \). We now consider two cases according to the value of \(j \) which \(G_0 \in \mathcal{G}_{i,j} \).

Case 1. \(G_0 \in \mathcal{G}_{i,j} \), where \(j \in \{1, 2, 5\} \) and \((i, j) \notin \{(1, 5), (2, 2), (2, 5), (3, 2), (3, 5)\} \).

Then the units in \(G_0 \) are \(K_t \)-units, where \(t \in \{2, 3, 4\} \). By Claim 3, for every vertex \(v \in I_{v_0}, \) there is a vertex \(w \in N_G(v) \setminus S^v \).
Claim 4. For every vertex \(v \in I_{v_0^1} \) and \(w \in N_{G_0}(v) \setminus S_{v_0^1} \), the edge \(vw \) is a bridge of \(G_0 \).

Proof. On the contrary, suppose that there is a vertex \(v \in I_{v_0^1} \) and a vertex \(w \in N_{G_0}(v) \setminus S_{v_0^1} \) such that \(w \in V(F_{i_0}^1) \). Since the \(F_{i_0}^1 \)-unit is a \(K_t \)-unit, where \(t \in \{ 2, 3, 4 \} \), we have \(N_G(v_0^1) \cap V(F_{i_0}^1) = V(F_{i_0}^1) \setminus \{ v_0^1 \} \). Hence, by (5) \(V(F_{i_0}^1) \setminus \{ v_0^1 \} \subseteq S \). So by the definition of \(S_{v_0^1} \), \(V(F_{i_0}^1) \setminus \{ v_0^1 \} \subseteq S_{v_0^1} \). Then \(w \in S_{v_0^1} \), a contradiction. Therefore, for any \(v \in I_{v_0^1} \) and \(w \in N_{G_0}(v) \setminus S_{v_0^1} \), \(v \not\in V(F_{i_0}^1) \), and so \(vw \) is a bridge of \(G_0 \). \(\Box \)

For every vertex \(v \in I_{v_0^1} \), we have \(S \setminus \{ v \} \subseteq S_{v_0^1} \). Also \(S \) covers \(E(G_0) \). Hence, \(S_{v_0^1} \) covers \(E(G_0) \). Therefore, for every vertex \(w \in N_{G_0}(v) \setminus S_{v_0^1} \) in a \(F \)-unit, we have \(N_G(w) \cap V(F) \subseteq S_{v_0^1} \). Since each unit is a connected graph of order at least two, we have \(N_G(w) \cap V(F) \neq \emptyset \). For every vertex \(w \in N_{G_0}(v) \setminus S_{v_0^1} \), choose a vertex \(v_0^1 \in N_G(w) \cap V(F) \), then set \(A = \{ v_0^1 | w \in N_{G_0}(v_0^1) \setminus S_{v_0^1} \} \). This contradicts the choice of \(S \). Thus, there is a vertex \(w \in N_{G_0}(v) \setminus S_{v_0^1} \) in a \(F \)-unit such that for every vertex \(w \in N_G(v) \cap V(F) \) is adjacent to \(x \) or is adjacent to a vertex in \(V(G_0) \setminus S_{v_0^1} \). Therefore, for every \(w \in N_{G_0}(v) \setminus S_{v_0^1} \), we have \(S_{v_0^1} \setminus \{ v_0^1 \} \subseteq S_{v_0^1} \) and \(z \in N_G(w) \cap V(F) \), \(N_G(z) \setminus S_{v_0^1} \neq \emptyset \). \(\Box \)

Let \(v_1^1 \) be a vertex of \(I_{v_0^1} \). By Claim 5, there is a vertex \(v_2^1 \in N_G(v_1^1) \setminus S_{v_0^1} \) in a \(F_j \)-unit such that for every vertex \(v \in N_G(v_2^1) \cap V(F_{i_0}^1) \), \(N_G(v) \setminus S_{v_0^1} \neq \emptyset \).

Set \(I_{v_1^1} = (N_G(v_1^1) \cap V(F_{i_0}^1)) \setminus N_G(x) \). Assume that \(I_{v_1^1} = \emptyset \). Since the \(F_j \)-unit is a connected graph of order at least two, we have \(N_G(v_2^1) \cap V(F_{i_0}^1) \neq \emptyset \). By Claim 4, the path \(P(v_0^1) : v_0^1, v_1^1, v_2^1, v \), where \(v \in N_G(v_2^1) \cap V(F_{i_0}^1) \), is a bridge-augmenting path. Set \(I_1(v_0^1) = (I_{v_0^1} \cup I_{v_1^1}) \setminus \{ v_0^1 \} \). Clearly, \(I_1(v_0^1) = N_G(P(v_0^1)) \setminus N_G(x) \). If \(I_1(v_0^1) = \emptyset \), then \(G \in \mathcal{H}_{i,j} \), where \(j \in \{ 1, 2, 5 \}, (i,j) \not\in \{ (1,5), (2,2), (2,5), (3,2), (3,5) \} \), and \(G \) is obtained by Step 1 of Procedure \(A \). Therefore, \(G \in \mathcal{H}_i \) and the proof of the theorem is complete. If \(I_1(v_0^1) \neq \emptyset \), then for every vertex \(v_3^1 \in I_1(v_0^1) \), \(v_3^1 \in
New bounds on the independence number of connected graphs

By Claim 4, \(v_7^2 \) is adjacent to a vertex \(w \in V(G_0) \setminus S_{v_3}^{v_1} \).

By Claim 4, \(v_7^2w \) is a bridge of \(G_0 \). By Claim 5, there is a vertex \(v_2^2 \in N_G(v_7^2) \setminus S_{v_3}^{v_1} \)
in a \(F_2^1 \)-unit such that for every vertex \(v \in N_G(v_7^2) \cap V(F_2^1), N_G(v) \setminus S_{v_3}^{v_1} \neq \emptyset \).

Set \(I_{v_3} = (N_G(v_7^2) \cap V(F_2^1)) \setminus N_G(x) \). This argument will continue with discussion on the \(I_{v_3} \).
If \(I_{v_3} \neq \emptyset \), since \(G \) is a finite graph, there is an integer \(l_2 \geq 1 \) that \(I_{v_3} = \emptyset \).
Then the path \(P^2(v_7^1) : v_7^1, \ldots, v_{2l_2+1}^2 \) is a bridge-alternating path in \(G_0 \).

Set \(I_2(v_7^1) = \cup_{l=1}^{l_2} I_{v_3} \setminus \{v_2^3, v_2^4, \ldots, v_{2l_2}^2 \} \). Clearly, \(I_2(v_7^1) = N_v(P^2(v_7^1)) \setminus N_G(x) \).

If for a vertex \(v_7^1 \in I_1(v_0^1), I_2(v_7^1) \neq \emptyset \), then continue as procedure of obtaining the path \(P^2(v_7^1) \) with the start of every vertex \(v_7^1 \in I_2(v_7^1) \). Since \(G_0 \) is a finite graph, then there is an integer \(k_0 \) that \(N_v(P^{k_0}(v_7^1)) \subseteq N_G(x) \) for all \(v_7^1 \in I_{k_0} = (v_7^1, k_0) \).

Then, \(G \in H_{i,j} \) where \(j \in \{1, 2, 5\}, (i, j) \notin \{(1, 5), (2, 2), (2, 5), (3, 2), (3, 5)\} \), and \(G \) is obtained by Step 1 of Procedure \(A \). Therefore, \(G \in H_i \) and the proof of the theorem is complete.

Next assume that \(I_{v_3} = \emptyset \). Similar to Claim 3, for every vertex \(v_7^1 \in I_{v_3} \), \(N_G(v_7^1) \setminus S_{v_3}^{v_1} \neq \emptyset \). Since the \(F_1^1 \)-unit is a \(K_1 \)-unit, where \(t \in \{2, 3, 4\} \), similar to Claim 4, for any \(w \in N_G(v_7^1) \setminus S_{v_3}^{v_1} \), the edge \(wv_7^1 \) is a bridge of \(G_0 \). Similar to the proof of Claim 5, there is a vertex \(v_2^3 \in N_G(v_7^1) \setminus S_{v_3}^{v_1} \) in a \(F_1^1 \)-unit such that for every vertex \(v \in N_G(v_7^1) \cap V(F_2^1), N_G(v) \setminus S_{v_3}^{v_1} \neq \emptyset \). Set \(I_{v_3} = (N_G(v_7^1) \cap V(F_2^1)) \setminus N_G(x) \).

This argument will continue with discussion on the \(I_{v_3} \).
If \(I_{v_3} \neq \emptyset \), since \(G_0 \) is a finite graph, there is an integer \(l_1 \geq 2 \) such that for \(2 \leq l < l_1 \) we have the following.

\(S_{v_7^1}^{v_3} = (S_{v_2}^{v_3} \setminus \{v_{2l_2+1}^2\}) \cup \{v_2^3\} \), where \(v_2^3 \in N_G(v_7^1) \setminus S_{v_3}^{v_1} \) is a vertex of a \(F_2^1 \)-unit and \(v_{2l_2+1}^2 \in N_G(v_2^3) \cap V(F_1^1) \).

Similar to Claims 3 and 4, for \(2 \leq l < l_1 \), we have

Claim 6. For every vertex \(v \in N_G(v_2^1) \cap V(F_1^1), N_G(v) \setminus S_{v_3}^{v_1} \neq \emptyset \).

Claim 7. The edge \(v_{2l_2+1}^2w \) is a bridge of \(G_0 \), where \(w \in N_G(v_{2l_2+1}^2) \setminus S_{v_3}^{v_1} \).

For \(2 \leq l \leq l_1 - 1 \), set \(I_{v_3} = (N_G(v_2^1) \cap V(F_1^1)) \setminus N_G(x) \) such that \(I_{v_3} \neq \emptyset \) and \(I_{v_{2l_2+1}}^2 = \emptyset \).

Since the \(F_1^1 \)-unit is a connected graph of order at least two, then \(N_G(v_2^1) \cap V(F_1^1) \neq \emptyset \). By Claims 4 and 7, the path \(P^1(v_0^1) : v_0^1, v_1^1, \ldots, v_{2l_2}^1 \),
where \(v_{2l_2}^1 \in N_G(v_{2l_2}^1) \cap V(F_1^1) \), is a bridge-augmenting path in \(G_0 \). Set \(I_1(v_0^1) = \cup_{l=0}^{l_2} I_{v_3} \setminus \{v_1^1, v_2^1, \ldots, v_{2l_2}^1\} \).
Clearly, \(I_1(v_0^1) = N_v(P^1(v_0^1)) \setminus N_G(x) \). If \(I_1(v_0^1) = \emptyset \), then \(G \in H_{i,j} \) where \(j \in \{1, 2, 5\}, (i, j) \notin \{(1, 5), (2, 2), (2, 5), (3, 2), (3, 5)\} \), and \(G \) is obtained by Step 1 of Procedure \(A \). Therefore, \(G \in H_i \) and the proof of the theorem is complete. If \(I_1(v_0^1) \neq \emptyset \), for every vertex \(v_7^1 \in I_1(v_0^1) \), there is an integer \(l \in \{0, \ldots, l_1 - 1\} \) that \(v_7^1 \in I_{v_3} \setminus \{v_{2l_2}^1\} \).
By Claim 6, \(v_7^1 \) is adjacent to a vertex \(v_9^2 \in V(G_0) \setminus S_{v_3}^{v_1} \). By Claim 7, \(v_9^2v_2^1 \) is a bridge of \(G_0 \), then \(v_9^2 \) is a vertex of a \(F_2^1 \)-unit. Continue as procedure of obtaining the path \(P^1(v_0^1) \) with the
start of the vertex $v_2^2 \in N_G(v_1^2) \setminus S_{v_1^2}^{k-1}$. Therefore, there is an integer $l_2 \geq 1$ that $I_{v_{2l_2}^2} = \emptyset$. Then the path $P^2(v_1^2) : v_1^2, v_2^2, \ldots, v_{2l_2+1}^2$ is a bridge-alternating path in G_0. Set $I_2(v_1^2) = \cup_{i=1}^{2l_2} I_{v_i^2} \setminus \{v_2^2, v_3^2, \ldots, v_{2l_2+1}^2\}$. Clearly, $I_2(v_1^2) = N_G(P^2(v_1^2)) \setminus N_G(x)$. If for each vertex $v_i^2 \in I_1(v_1^2)$, $I_2(v_i^2) = \emptyset$, then $G \in \mathcal{H}_{i,j}$, where $j \in \{1, 2, 5\}$, $(i, j) \notin \{(1, 5), (2, 2), (2, 5), (3, 2), (3, 5)\}$, and G is obtained by Steps 1, 2 of Procedure A. Therefore, $G \in \mathcal{H}_i$ and the proof of the theorem is complete. If for a vertex $v_i^2 \in I_1(v_1^2)$, $I_2(v_i^2) \neq \emptyset$, then continue as procedure of obtaining the path $P^2(v_1^2)$ with the start of every vertex $v_i^2 \in I_2(v_1^2)$. Since G_0 is a finite graph, then there is an integer k_0 that $N_G(v_1^{k_0}) \subset N_G(x)$, for every $v_1^{k_0} \in I_{k-1}(v_1^{k_0})$, then $G \in \mathcal{H}_{i,j}$, where $j \in \{1, 2, 5\}$, $(i, j) \notin \{(1, 5), (2, 2), (2, 5), (3, 2), (3, 5)\}$, and G is obtained by Steps 1, 2, k_0 of Procedure A. Therefore, $G \in \mathcal{H}_i$ and the proof of the theorem is complete.

Case 2. $G_0 \in \mathcal{H}_{i,j}$, where $j \in \{3, 4\}$ and $(i, j) \neq (1, 4)$. We follow the argument used to obtain the paths P^1, \ldots, P^{k_0} in Case 1. Assume that each F_i^k-unit is a K_t-unit, where $t \in \{2, 3, 4\}$, $1 \leq k \leq k_0$, $0 \leq l \leq l_1$ if $k = 1$, and $1 \leq l \leq l_k$ if $k \geq 2$. Then we proceed to obtain the paths P^1, \ldots, P^{k_0}. Consequently, G is obtained by Steps 1, 2, k_0 of Procedure B. Therefore $G \in \mathcal{H}_{i,j}$, where $j \in \{3, 4\}$ and $(i, j) \neq (1, 4)$, i.e., $G \in \mathcal{H}_i$ and the proof of the theorem is complete. Next assume that there are integers $k \in \{1, \ldots, k_0\}$ and $l \in \{0, \ldots, l_k\}$ such that $v_l^k \in V(F_l^k)$, where $F_l^k \in \{C_5, K_4^*\}$. By the argument used to obtain the paths P^k in Case 1, we have the following fact.

Fact 1. $v_l^k \in N_G(x)$ or v_l^k is a vertex of the bridge-alternating path $P : v_1^{k_1}, v_2^{k_1}, \ldots, v_0^k$ (if $k = 1$) that $v_1^{k_1} \cup v_2^{k_1}$ is a bridge of G_0 and $v_1^{k_1}$ belongs to the F_1^k-unit, or v_l^k is a vertex of the bridge-alternating path $P : v_1^{k'}, v_2^{k'}, \ldots, v_1^{k'}, v_l^{k'}$ (if $k \geq 2$) that $v_l^{k'} \in I_{v_{k-1}^{k'}} \setminus \{v_{k+1}^{k'-1}\}$, $v_l^{k'} \cup v_{l+1}^{k'}$ is a bridge of G_0 and $v_l^{k'} \cup v_{l+1}^{k'}$ belongs to the F_l^{k-1}-unit.

Similar to the proof of Claim 3, for every vertex $z \in N_G(v_l^k) \cap V(F_l^k)$, $N_G(z) \setminus S_{v_l^k}^{k-1} \neq \emptyset$. Let $\left(N_G(v_l^{k'}) \cap V(F_l^k)\right) \setminus N_G(x) = \emptyset$. Then set $I_l(v_l^{k'}) = (N_G(v_{k-1}^k) \cap V(F_l^k)) \setminus N_G(x)$. Hence, G is obtained by Step 1 of Procedure C. Therefore, $G \in \mathcal{H}_{i,j}$, where $j \in \{3, 4\}$ and $(i, j) \neq (1, 4)$, i.e., $G \in \mathcal{H}_i$ and the proof of the theorem is complete. Next we assume that $N_G(v_l^k) \cap V(F_l^k)) \setminus N_G(x) \neq \emptyset$. Let for each vertex $v \in (N_G(v_{k-1}^k) \cap V(F_l^k)) \setminus N_G(x)$, $N_G(v) \setminus S_{v_l^k}^{k-1} \notin V(F_l^k)$. Then for each vertex $v \in (N_G(v_l^k) \cap V(F_l^k)) \setminus N_G(x)$, there is a vertex $w \in N_G(v) \setminus (V(F_l^k) \cup S_{v_l^k}^{k-1})$, so vw is a bridge of G_0. Therefore, we can follow the same argument used to obtain the paths P^2, \ldots, P^{k_0} in Case 1, for each $v \in (N_G(v_{k-1}^k) \cap V(F_l^k)) \setminus N_G(x)$, since $j \neq 5$ and so by Observation 4, for the each next unit is a K_t-unit, where $t \in \{2, 3, 4\}$. This together with the Fact 1 implies that G is obtained by Steps 1, 2, k_0 of Procedure C. Therefore, $G \in \mathcal{H}_{i,j}$, where $j \in \{3, 4\}$ and $(i, j) \neq (1, 4)$, i.e., $G \in \mathcal{H}_i$ and the proof of the theorem is complete. Therefore, we assume now that the following holds.

1850069-12
There is a vertex $v \in (N_G(v^k_i) \cap V(F^k_i)) \setminus N_G(x)$ such that $N_G(v) \setminus S_{c^k_i}^{c^k_i} \subseteq V(F^k_i)$.

We know that $F^k_i \in \{C_5, K^*_4\}$. Let the vertices of C_5 and K^*_4 are labeled as Fig. 3.

Assume that $F^k_i = C_5$. Without loss of generality, assume that $v^k_i = c_1$ and $v = c_2$. By (\star), $N_G(c_2) \setminus S_{c_2}^{c_2} \neq \emptyset$ and $N_G(c_2) \setminus S_{c_2}^{c_2} \subseteq V(F^k_i)$. Thus assume for the next that $F^k_i = \{c_1, c_3\}$. But $c_1 \in S_{c_2}^{c_2}$, then $c_3 \notin S_{c_2}^{c_2}$.

Subcase 2.1. v^k_i is a divider vertex of K^*_4. Now consider the vertex v described in (\star). Assume that v is not a divider vertex. Without loss of generality, we can suppose $v^k_i = c_1$, $v = c_2$. By (\star), $N_G(c_2) \setminus S_{c_2}^{c_2} \neq \emptyset$ and $N_G(c_2) \setminus S_{c_2}^{c_2} \subseteq V(F^k_i)$. $N_G(c_2) \cap V(F^k_i) = \{c_1, c_3, c_4\}$. But $c_1 \in S_{c_2}^{c_2}$, then $c_3, c_4 \notin S_{c_2}^{c_2}$. Hence, $c_3 \notin S_{c_2}^{c_2}$. Therefore, $\{c_3, c_4\} \subseteq S$.

Set $I_1(x) = N_G(c_3) \setminus N_G(x)$. If $I_1(x) = \emptyset$ then $G \in H_1$, and G is obtained by Step 1 of Procedure C. Thus, assume that $I_1(x) \neq \emptyset$. By the Fact 1, (7) and (8), we can use the argument of obtaining the paths P^2, \ldots, P^{k_G} as Case 1, since $j = 5$ and so by Observation 4, for the next each unit is a K_1-unit, where $t \in \{2, 3, 4\}$. We conclude G is obtained by Steps 1, 2, C of Procedure C. Therefore, $G \in H_{4, j}$, $j \notin \{3, 4\}$ and $(i, j) \neq (1, 4)$, i.e., $G \in H_t$ and the proof of the theorem is complete.

Thus assume for the next that $F^k_i = K^*_4$. Now we continue depending on if v^k_i is a divider vertex of K^*_4 or non-divider vertex of K^*_4.

We discuss according to if \(v \in N_G(z) \setminus S_{c_1} \neq \emptyset \). Since \(c_5 \in S_{c_3} \), we have
\[
N_G(c_5) \setminus S_{c_1} \not\subseteq V(F_k^S).
\]
(9)

Suppose that \(N_G(c_5) \setminus S \subseteq V(F_k^S) \). We replace \(S \) by \(S^* = (S \setminus \{c_5\}) \cup \{c_3\} \), and do the proof in turn. We thus deduce that \(N_G(c_2) \setminus (S^*)_c \neq \emptyset \). Since \(c_3 \in (S^*)_c \), we have \(N_G(c_2) \setminus (S^*)_c \not\subseteq V(F_k^S) \), a contradiction, since with \((S^*)_c = (S^*_{c_1} \setminus \{c_1\}) \cup \{c_3\} \) and (\(* \)), we obtain \(N_G(c_2) \setminus (S^*)_c \subseteq N_G(c_2) \setminus S_{c_1} \not\subseteq V(F_k^S) \). Then we have
\[
N_G(c_5) \setminus S \not\subseteq V(F_k^S).
\]
(10)

Set \(I_1(c_6) = N_G[c_6] \setminus N_G(x) \). If \(I_1(c_6) = \emptyset \) then \(G \in H_4 \), and \(G \) is obtained from Step 1 of Procedure \(C \). Thus assume that \(I_1(c_6) \neq \emptyset \). By the Fact 1, (9) and (10), we can use the argument of obtaining the paths \(P^{c_1}, \ldots, P^{c_k} \) as Case 1, since \(j \neq 5 \) and so by Observation 4, for the next each unit is a \(K_1 \)-unit, where \(t \in \{2, 3, 4\} \). Thus \(G \in H_4 \), and \(G \) is obtained from Steps 1, \(\ldots, k \) of Procedure \(C \) and the proof of the theorem is complete.

Next assume that \(v \) is a divider vertex. Without loss of generality, we can suppose \(v_\frac{k}{2} = c_1 \), \(v = c_6 \). By (\(* \)), \(N_G(c_6) \setminus S_{c_1} \neq \emptyset \) and \(N_G(c_6) \setminus S_{c_6} \not\subseteq V(F_k^S) \). \(N_G(c_6) \setminus V(F_k^S) = \{c_1, c_6\} \). But \(c_1 \in S_{c_1} \setminus S_{c_6} \). Hence, \(c_5 \not\in S \). Therefore, \(\{c_3, c_4\} \subseteq S \), since \(S \) covers \(c_3c_5 \) and \(c_4c_5 \). Then \(\{c_3, c_4\} \subseteq S_{c_1} \). On the other hand, for each vertex \(z \in N_G(c_1) \cap V(F_k^S) = \{c_2, c_6\} \), \(N_G(z) \setminus S_{c_1} \neq \emptyset \). Since \(c_4 \in S_{c_2} \), we have
\[
N_G(c_2) \setminus S_{c_1} \not\subseteq V(F_k^S).
\]
(11)

Suppose that there is \(t \in \{3, 4\} \) that \(N_G(c_t) \setminus S \subseteq V(F_k^S) \). We replace \(S \) by \(S^* = (S \setminus \{c_t\}) \cup \{c_3\} \), and do the proof in turn. We thus deduce that \(N_G(c_3) \setminus (S^*)_c \neq \emptyset \). Since \(c_3 \in (S^*)_c \), we have \(N_G(c_3) \setminus (S^*)_c \not\subseteq V(F_k^S) \), a contradiction, since with \((S^*)_c = (S^*_{c_1} \setminus \{c_1\}) \cup \{c_3\} \) and (\(* \)), we obtain \(N_G(c_3) \setminus (S^*)_c \subseteq N_G(c_3) \setminus S_{c_1} \not\subseteq V(F_k^S) \). Then for \(t \in \{3, 4\} \), we have
\[
N_G(c_t) \setminus S \not\subseteq V(F_k^S).
\]
(12)

Set \(I_1(c_2) = N_G[c_2] \setminus N_G(x) \). If \(I_1(c_2) = \emptyset \) then \(G \in H_4 \), and \(G \) is obtained from Step 1 of Procedure \(C \). Thus assume that \(I_1(c_2) \neq \emptyset \). By the Fact 1, (11) and (12), we can use the argument of obtaining the paths \(P^2, \ldots, P^{k_2} \) as Case 1, since \(j \neq 5 \) and so by Observation 4, for the next each unit is a \(K_1 \)-unit, where \(t \in \{2, 3, 4\} \). Thus \(G \in H_4 \), and \(G \) is obtained from Steps 1, \(\ldots, k_2 \) of Procedure \(C \) and the proof of the theorem is complete.

Subcase 2.2. \(v_\frac{k}{2} \) is a non-divider vertex of \(K_1^*_t \). Assume that \(v_\frac{k}{2} \) has a divider neighbor. We discuss according to if \(v \), described in (\(* \)), is a divider vertex or not. First assume that \(v \) is not a divider vertex. Without loss of generality, we can assume that \(v_\frac{k}{2} = c_2 \) and \(v = c_3 \). By (\(* \)), \(N_G(c_3) \setminus S_{c_2} \neq \emptyset \) and \(N_G(c_3) \setminus S_{c_3} \not\subseteq V(F_k^S) \). \(N_G(c_3) \cap V(F_k^S) = \{c_2, c_4, c_5\} \). But \(c_2 \in S_{c_2} \). If \(c_4 \not\in S_{c_2} \), then \(c_4 \not\in S \). But \(c_2 \not\in S \), a contradiction, since \(S \) covers \(c_2c_4 \). Therefore, \(c_4 \in S_{c_2} \). Then \(c_5 \not\in S_{c_2} \). Hence, \(c_5 \not\in S \). Therefore, \(c_5 \in S \), since \(S \) covers \(c_5c_6 \). Then \(c_6 \in S_{c_1} \). On the other
New bounds on the independence number of connected graphs

hand, for each vertex $z \in N_G(c_2) \cap V(F_k^c) = \{c_1, c_3, c_4\}$, $N_G(z) \subseteq S_c^k \neq \emptyset$. Since $c_6 \in S_c^k$, we have

$$N_G(c_1) \setminus S_c^k \not\subseteq V(F_k^c).$$

(13)

Suppose that $N_G(c_6) \setminus S \subseteq V(F_k^c)$. We replace S by $S^* = (S \setminus \{c_6\}) \cup \{c_5\}$, and do the proof in turn. We thus deduce that $N_{G_1}(c_3) \setminus (S^*)_{c_6}^k \neq \emptyset$. Since $c_5 \in (S^*)_{c_5}^k$, we have $N_{G_1}(c_3) \setminus (S^*)_{c_5}^k \not\subseteq V(F_k^c)$, a contradiction, since with $(S^*)_{c_5}^k = (S_{c_5}^k \setminus \{c_6\}) \cup \{c_5\}$ and (*), we obtain $N_{G_1}(c_3) \setminus (S^*)_{c_5}^k \subseteq N_{G_1}(c_3) \setminus S_{c_5}^k \subseteq V(F_k^c)$. Then we have

$$N_G(c_1) \setminus S \not\subseteq V(F_k^c).$$

(14)

Set $I_1(c_1) = N_G(c_1) \setminus N_G(x)$. If $I_1(c_1) = \emptyset$ then $G \not\in \mathcal{H}_t$, and G is obtained from Step 1 of Procedure C. Thus assume that $I_1(c_1) \neq \emptyset$. By the Fact 1, (13) and (14), we can use the argument of obtaining the paths P^2, \ldots, P^k_c as Case 1, since $j \neq 5$ and so by Observation 4, for the next each unit is a K_t-unit, where $t \in \{2, 3, 4\}$. Thus $G \in \mathcal{H}_t$, and G is obtained from Steps 1, \ldots, k_G of Procedure C and the proof of the theorem is complete.

We next assume that v is a divider vertex. Without loss of generality, we can assume that $v_{k}^c = c_2$ and $v = c_1$. By (*), $N_G(c_1) \setminus S_{c_2}^k \neq \emptyset$ and $N_G(c_1) \setminus S_{c_1}^k \not\subseteq V(F_k^c)$. $N_G(c_1) \cap V(F_k^c) = \{c_2, c_6\}$. But $c_2 \in S_{c_2}^k$. Then $c_6 \not\in S_{c_2}^k$. Hence, $c_6 \not\in S$. Therefore, $c_5 \in S$, since S covers c_5c_6. Then $c_5 \in S_{c_1}^k$, for $t \in \{3, 4\}$. On the other hand, for each vertex $z \in N_G(c_2) \cap V(F_k^c) = \{c_1, c_3, c_4\}$, $N_G(z) \subseteq S_{c_2}^k \neq \emptyset$. Since $c_2, c_3, c_5 \subseteq S_{c_2}^k$ and $c_2, c_4, c_5 \subseteq S_{c_2}^k$, for $t \in \{3, 4\}$, we have

$$N_G(c_1) \setminus S_{c_2}^k \neq V(F_k^c).$$

(15)

Suppose that $N_G(c_5) \setminus S \not\subseteq V(F_k^c)$. We replace S by $S^* = (S \setminus \{c_5\}) \cup \{c_6\}$, and do the proof in turn. We thus deduce that $N_{G_1}(c_3) \setminus (S^*)_{c_5}^k \neq \emptyset$. Since $c_6 \in (S^*)_{c_6}^k$, we have $N_{G_1}(c_3) \setminus (S^*)_{c_6}^k \not\subseteq V(F_k^c)$, a contradiction, since with $(S^*)_{c_6}^k = (S_{c_6}^k \setminus \{c_6\}) \cup \{c_6\}$ and (*), we obtain $N_{G_1}(c_3) \setminus (S^*)_{c_6}^k \subseteq N_{G_1}(c_3) \setminus S_{c_6}^k \subseteq V(F_k^c)$. Then we have

$$N_G(c_5) \setminus S \not\subseteq V(F_k^c).$$

(16)

Set $I_1(c_3) = N_G(c_3) \setminus N_G(x)$. If $I_1(c_3) = \emptyset$ then $G \not\in \mathcal{H}_t$, and G is obtained from Step 1 of Procedure C. Thus assume for the next that $I_1(c_3) \neq \emptyset$. By the Fact 1, (15) and (16), we can use the argument of obtaining the paths P^2, \ldots, P^k_c as Case 1, since $j \neq 5$ and so by Observation 4, for the next each unit is a K_t-unit, where $t \in \{2, 3, 4\}$. Thus $G \in \mathcal{H}_t$, and G is obtained from Steps 1, \ldots, k_G of Procedure C and the proof of the theorem is complete.

It remains to be assumed that v_{k}^c has no divider neighbor. Without loss of generality, assume that $v_{k}^c = c_3$. Since $c_2, c_5 \subseteq S$, then $c_2, c_3 \subseteq S_{c_2}^k$. Thus, $N_G(c_4) \cap V(F_k^c) = \{c_2, c_3, c_5\} \subseteq S_{c_2}^k$. Then $N_G(c_4) \setminus S_{c_2}^k \not\subseteq V(F_k^c)$. Therefore, the vertex v described in (*), is a neighbor of c_3 that is a non-divider vertex but it has a divider neighbor. Without loss of generality, suppose that $v = c_2$. By (*), $N_{G_1}(c_2) \setminus S_{c_2}^k \neq \emptyset$ and $N_{G_1}(c_2) \setminus S_{c_2}^k \not\subseteq V(F_k^c)$. $N_{G_1}(c_2) \cap V(F_k^c) = \{c_1, c_3, c_4\}$. But $c_3, c_4 \subseteq S_{c_2}^k$. Then $c_1 \not\in S_{c_2}^k$. Hence, $c_1 \not\in S$. Without loss of generality, suppose
that \(v = c_2 \). By (\(\ast \)), since \(\{c_4, c_6\} \subseteq S \), we have \(\{c_4, c_6\} \subseteq S_{c_5}^3 \). On the other hand, for each vertex \(z \in N_G(c_3) \cap V(F_k^5) = \{e_2, e_4, e_5\} \), \(N_G(z) \backslash S_{c_5}^3 \neq \emptyset \). Since \(\{c_4, c_6\} \subseteq S_{c_5}^3 \), we have

\[
N_G(c_5) \setminus S_{c_5}^3 \nsubseteq V(F_k^5).
\] (17)

Suppose that \(N_G(c_6) \setminus S \subseteq V(F_k^5) \). We replace \(S \) by \(S^* = (S \setminus \{c_6\}) \cup \{c_1\} \), and do the proof in turn. We thus deduce that \(N_G(c_2) \setminus (S^*)_{c_2}^3 \neq \emptyset \). Since \(c_1 \in (S^*)_{c_2}^3 \), we have \(N_G(c_2) \setminus (S^*)_{c_2}^3 \nsubseteq V(F_k^5) \), a contradiction, since with \((S^*)_{c_2}^3 = (S_{c_5}^3 \setminus \{c_6\}) \cup \{c_1\} \) and \(\ast \), we obtain \(N_G(c_2) \setminus (S^*)_{c_2}^3 \subseteq N_G(c_2) \setminus S_{c_5}^3 \subseteq V(F_k^5) \). Then we have

\[
N_G(c_6) \setminus S \nsubseteq V(F_k^5).
\] (18)

Set \(I_1(c_5) = N_G[c_5] \setminus N_G(x) \). If \(I_1(c_5) = \emptyset \), then \(G \in \mathcal{H}_4 \), and \(G \) is obtained from Step 1 of Procedure \(C \). Thus assume for the next that \(I_1(c_5) \neq \emptyset \). By the Fact 1, (17) and (18), we can use the argument of obtaining the paths \(P^2, \ldots, P^k \) as Case 1, since \(j \neq 5 \) and so by Observation 4, for the next each unit is a \(K_t \)-unit, where \(t \in \{2, 3, 4\} \). Thus \(G \in \mathcal{H}_4 \), and \(G \) is obtained from Steps 1, \ldots, \(k \) of Procedure \(C \) and the proof of the theorem is complete.

Acknowledgment

We would like to thank the referees for their careful review of the paper and some helpful suggestions.

Appendix

Proof of Corollary 5. Without loss of generality, let \(G \) be a graph in \(\mathcal{G}_3 \), so that it has obtained from \(k \geq 1 \) disjoint \(K_3 \)-units by adding \(k - 1 \) edges. The units of \(G \) are pairwise disjoint. Then every \(\tau(G) \)-set has at least \(\tau(F) \) vertices from every \(F \)-unit in \(G \) to cover these units. Therefore, every \(\tau(G) \)-set has at least \(2k \) vertices, since \(\tau(K_3) = 2 \). On the other hand, it is easy to see \(n(G) = 3k \) and \(m(G) = 4k - 1 \). Then, by Theorem 2,

\[
\tau(G) = \frac{1}{3}n \left(1 + \frac{1}{4}m \right) + \frac{3}{12} = 2k.
\]

Therefore, every \(\tau(G) \)-set has exactly \(\tau(F) \) vertices from every \(F \)-unit in \(G \). The proof for the other graphs in \(\mathcal{G} \) is similarly verified.

References

New bounds on the independence number of connected graphs