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Abstract

Let G ¼ ðV;EÞ be a simple graph with no isolated vertex. A 2-rainbow dominating function (2RDF) of G is a function

f from the vertex set V(G) to the set of all subsets of the set f1; 2g such that for any vertex v 2 VðGÞ with f ðvÞ ¼ ; the

condition
S

u2NðvÞ f ðuÞ ¼ f1; 2g is fulfilled, where N(v) is the open neighborhood of v. A 2-rainbow dominating function f is

called a total 2-rainbow dominating function (T2RDF) if the subgraph of G induced by fv 2 VðGÞ j f ðvÞ 6¼ ;g has no

isolated vertex. The weight of a T2RDF f is defined as wðf Þ ¼
P

v2VðGÞ jf ðvÞj. The total 2-rainbow domination number,

ctr2ðGÞ, is the minimum weight of a total 2-rainbow dominating function on G. In this paper, we characterize all graphs

G whose total 2-rainbow domination number is equal to their order minus one.

Keywords 2-rainbow dominating function � 2-rainbow domination number � Total 2-rainbow dominating function �
Total 2-rainbow domination number
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1 Introduction

For notation and graph theory terminology, we in general

follow Haynes et al. (1998a, b) and Henning and Yeo

(2013). In this paper, we continue the study of rainbow

domination number in graphs. Specifically, let G be a

simple graph with vertex set V ¼ VðGÞ, edge set E ¼ EðGÞ
and with no isolated vertex. The order |V| of G is denoted

by n and size |E| of G is denoted by m. For every vertex

v 2 V , the open neighborhood NGðvÞ ¼ NðvÞ is the set

fu 2 V j uv 2 Eg and the closed neighborhood of v is the

set NG½v� ¼ N½v� ¼ NðvÞ [ fvg. The degree of a vertex v 2

V is degGðvÞ ¼ degðvÞ ¼ jVðvÞj. The minimum and the

maximum degree of a graph G are denoted by d ¼ dðGÞ
and D ¼ DðGÞ, respectively. The open neighborhood of a

set S � V is the set NðSÞ ¼ [v2SNðvÞ, and the closed

neighborhood of S is the set N½S� ¼ NðSÞ [ S. A leaf is a

vertex of degree one, a support vertex is a vertex adjacent

to a leaf, a weak support vertex is a support vertex adjacent

to exactly one leaf, and a strong support vertex is a support

vertex adjacent to at least two leaves. We denote the set of

leaves and support vertices of G by L(G) and S(G),

respectively. We also denote by Lv the set of all leaves

adjacent to a support vertex v. We write Kn for the com-

plete graph of order n, Cn for a cycle of order n and Pn for a

path of order n. The diameter of G, denoted by diamðGÞ, is
the maximum value among minimum distances between all

pairs of vertices of G. The girth of G, denoted by g(G), is

the minimum length of a cycle in G. The corona graph

H � K1 of a graph H is a graph obtained from H by

attaching a leaf to every vertex of H. For a subset S of

vertices of G, we denote by G[S] the subgraph induced by

S.

A subset S of vertices of a graph G is a dominating set of

G if every vertex in VðGÞ � S has a neighbor in S. The

domination number cðGÞ is the minimum cardinality of a

dominating set of G. A dominating set S in a graph with no
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isolated vertex is called a total dominating set of G if

G[S] has no isolated vertex. The total domination number

ctðGÞ is the minimum cardinality of a total dominating set

of G. The literature on the subject of domination parame-

ters in graphs, through 1998, has been surveyed in Haynes

et al. (1998a, b), and the subject of total domination in

graphs, through 2013, has been surveyed in Henning and

Yeo (2013). Recently, Liu and Chang (2013) introduced

the concept of total Roman domination in graphs albeit in a

more general setting. And very recently has been studied

by Abdollahzadeh Ahangar et al. (2016, 2017).

A 2-rainbow dominating function (2RDF) of a graph G

is a function f from the vertex set V(G) to the set of all

subsets of the set f1; 2g such that for any vertex v 2 VðGÞ
with f ðvÞ ¼ ; the condition [u2NðvÞf ðuÞ ¼ f1; 2g is ful-

filled, where N(v) is the open neighborhood of v. The

weight of a 2RDF f is defined as wðf Þ ¼
P

v2VðGÞ jf ðvÞj.

The minimum weight of a 2-rainbow dominating function

is called the 2-rainbow domination number of G, denoted

by cr2ðGÞ. The concept of 2-rainbow domination was

introduced by Brešar et al. (2008), and has been studied by

several authors, for example Chang et al. (2010), Chellali

and Jafari Rad (2013), Chunling et al. (2009), Brešar and

Sumenjak (2007), Dehgardi et al. (2015), Falahat et al.

(2014), Meierling et al. (2011), Sheikholeslami and Volk-

mann (2012), Wu and Jafari Rad (2013), Wu and Xing

(2010) and Xu (2009).

If f is a 2-rainbow dominating function in a graph G,

then clearly fv 2 VðGÞ j f ðvÞ 6¼ ;g is a dominating set of

G. Abdollahzadeh Ahangar et al. (2018a) considered a

variant of 2-rainbow dominating functions f such that fv 2
VðGÞ j f ðvÞ 6¼ ;g is a total dominating set of G. They thus

introduced the concept of total 2-rainbow domination in

graphs. A 2-rainbow dominating function f is called a total

2-rainbow dominating function, or just T2RDF if the sub-

graph of G induced by fv 2 VðGÞ j f ðvÞ 6¼ ;g has no iso-

lated vertex. The total 2-rainbow domination number,

ctr2ðGÞ, is the minimum weight of a total 2-rainbow

dominating function on G. Clearly, ctr2ðGÞ is well defined
for any graph G with no isolated vertex, since assigning

f1g to every vertex yields a total 2-rainbow dominating

function and hence

ctr2ðGÞ� jVðGÞj: ð1Þ

It is shown in Abdollahzadeh Ahangar et al. (2018b) that

the decision version of the total 2-rainbow domination

problem is NP-complete.

A 2-rainbow dominating function f can be represented by

the ordered partition f ¼ ðV f
0 ;V

f
1 ;V

f
2;V

f
12Þ, where V

f
0 ¼ fv j

f ðvÞ ¼ ;g, V f
1 ¼ fv j f ðvÞ ¼ f1gg, V f

2 ¼ fv j f ðvÞ ¼ f2gg,

and V
f
12 ¼ fv j f ðvÞ ¼ f1; 2gg. Thus, f is a total 2-rainbow

dominating function if the subgraph of G induced by V
f
1 [

V
f
2 [ V

f
12 has no isolated vertex.

Note that if G1;G2; . . .;Gs are the components of G,

then ctr2ðGÞ ¼
Ps

i¼1 ctr2ðGiÞ. Hence, it would be sufficient

to consider only connected graphs in the study of total

2-rainbow domination.

Our purpose in this paper is to characterize all the

connected graphs G whose total 2-rainbow domination is

equal to their order minus one.

We make use of the following observations in this

paper.

Observation 1 If G is a connected graph of order n� 4,

and G has a support vertex x with jLxj � 2, then

ctr2ðGÞ� n� 1.

Observation 2 If G is a connected graph of order n,

different from K1;3, and G has a support vertex x with

jLxj � 3, then ctr2ðGÞ� n� 2.

Observation 3 If G is a connected graph of order n and G

has two support vertices x and y with jLxj � 2 and jLyj � 2,

then ctr2ðGÞ� n� 2.

Observation 4 If G is a connected graph of order n with

diamðGÞ ¼ 2, then ctr2ðGÞ� 2dðGÞ þ 1.

Proof Let x be a vertex of minimum degree dðGÞ and

define f : VðGÞ ! Pðf1; 2gÞ by f ðxÞ ¼ f1g; f ðuÞ ¼ f1; 2g
for u 2 NðxÞ and f ðyÞ ¼ ; if y 62 N½x�. Clearly, f is a

T2RDF on G of weight 2dðGÞ þ 1 and so

ctr2ðGÞ� 2dðGÞ þ 1. h

2 Graphs with Large Total 2-Rainbow
Domination Number

Assume D ¼ fH � K1 j H is a connected graphg. In

Abdollahzadeh Ahangar et al. (2018a), the authors char-

acterized all graphs G for which ctr2ðGÞ ¼ n as follows:

Theorem 5 (Abdollahzadeh Ahangar et al. 2018a) Let

G be a connected graph of order n. Then, ctr2ðGÞ ¼ n if

and only if G 2 D [ fP3g.

Here, we characterize all connected graphs G of order

n� 3 with ctr2ðGÞ ¼ n� 1. We start with some lemmas.

Lemma 6 Let G be a connected graph of order n with

dðGÞ� 2. Then, ctr2ðGÞ ¼ n� 1 if and only if G ¼ C3, C4

or C5.

Proof One side is clear. Let ctr2ðGÞ ¼ n� 1. If

diamðGÞ� 3 and w1w2. . .wk is a diametral path in G, then

let u1 2 Nðw1Þ � fw2g, v1 2 NðwkÞ � fwk�1g, and define

the function f : VðGÞ ! Pðf1; 2gÞ by f ðu1Þ ¼ f ðv1Þ ¼
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f1g; f ðw1Þ ¼ f ðwkÞ ¼ ; and f ðwÞ ¼ f2g otherwise. It is

easy to verify that f is a T2RDF on G of weight n� 2, a

contradiction. Thus, diamðGÞ� 2. If diamðGÞ ¼ 1, then

G is the complete graph of order n and we deduce from

ctr2ðKnÞ ¼ 2 that G ¼ K3 by the assumption. Henceforth,

we assume diamðGÞ ¼ 2. By Observation 4, we have

dðGÞ� n�2
2
. Let x be a vertex of minimum degree dðGÞ,

NðxÞ ¼ fx1; x2. . .; xkg and X ¼ VðGÞ � N½x�. Since

diamðGÞ ¼ 2 and dðGÞ� n�2
2
, we have 1� jXj � n

2
.

Assume X ¼ fz1; z2; . . .; zjXjg.

If jXj ¼ 1 and dðGÞ� 3, then the function f : VðGÞ !
Pðf1; 2gÞ defined by f ðxÞ ¼ f ðz1Þ ¼ ;; f ðx1Þ ¼ f1g; f ðvÞ ¼
f2g for v 2 NðxÞ � fx1g, is a TR2DF of G of weight n� 2,

a contradiction. If jXj ¼ 1 and dðGÞ ¼ 2, then clearly

G ¼ C4. Let jXj � 2.

If DðG½X�Þ� 2 and y 2 X has degree at least two in G[X],

then the function f : VðGÞ ! Pðf1; 2gÞ defined by f ðyÞ ¼
f1g; f ðvÞ ¼ ; for v 2 NðyÞ \ X, f ðuÞ ¼ f2g otherwise, is a

TR2DF ofG of weight at most n� 2, a contradiction. Assume

thatDðG½X�Þ� 1.Then, all components ofG[X] areK1 orK2. It

follows that each vertex inX has at least dðGÞ � 1 neighbors in

N(x) and every two vertices in X have at least dðGÞ � 2

common neighbors in N(x). If dðGÞ� 4, then the function f :

VðGÞ ! Pðf1; 2gÞ defined by f ðx1Þ ¼ f ðx2Þ ¼ f1g; f ðuÞ ¼
; for u 2 X and f ðvÞ ¼ f2g otherwise, is a TR2DF of G of

weight at most n� 2, a contradiction. IfG[X] has two isolated

vertices, say z1; z2, then Nðz1Þ ¼ Nðz2Þ ¼ NðxÞ and the

function f : VðGÞ ! Pðf1; 2gÞ defined by f ðz1Þ ¼ f ðz2Þ ¼
;; f ðx1Þ ¼ f1g and f ðvÞ ¼ f2g otherwise, is a TR2DF ofG of

weight n� 2, a contradiction. Henceforth, we assume that

dðGÞ� 3 andG[X] has at most one isolated vertex that implies

G[X] has a K2 component, say z1z2.

First let dðGÞ ¼ 3. Then, we have n� 8 and jXj � 4. If

jXj ¼ 4, then the function f : VðGÞ ! Pðf1; 2gÞ defined by

f ðx1Þ ¼ f ðx2Þ ¼ f1; 2g; f ðxÞ ¼ f ðx3Þ ¼ f1g and f ðuÞ ¼ ;
for u 2 X, is a TR2DF of G of weight n� 2, a contradiction.

We may assume, therefore, that jXj � 3. Since dðGÞ ¼ 3, we

may assume that x1 2 Nðz1Þ \ Nðz2Þ. Now, it is easy to verify
that the function f : VðGÞ ! Pðf1; 2gÞ defined by f ðx1Þ ¼
f1g; f ðxÞ ¼ f ðx2Þ ¼ f ðx3Þ ¼ f2g and f ðuÞ ¼ ; for u 2 X, is

a TR2DF ofG of weight n� 2 which leads to a contradiction.

Now let dðGÞ ¼ 2 and let without loss of generality that

degðx1Þ� degðx2Þ. Then, we have n� 6 and jXj � 3. If

n ¼ 6, then the function f : VðGÞ ! Pðf1; 2gÞ defined by

f ðx1Þ ¼ f1; 2g; f ðxÞ ¼ f1g; f ðx2Þ ¼ f2g and f ðuÞ

¼ ; otherwise;

when DðG½X�Þ ¼ 0 or DðG½X�Þ ¼ 1 and degðx1Þ� degðx2Þ,
and by

f ðx1Þ ¼ f1g; f ðxÞ ¼ f ðzÞ ¼ ; for exactly one z 2 Nðx1Þ

\ Z; and f ðuÞ ¼ f2g otherwise;

if DðG½X�Þ ¼ 1 and degðx1Þ ¼ degðx2Þ, is a TR2DF of G of

weight 4, a contradiction. Thus, n ¼ 5 and so jXj ¼ 2. It is

easy to check that G ¼ C5 in this case and the proof is

complete. h

Assume D1 is the family of graphs consisting of all

graphs G such that G is obtained from a graph in D [ fP3g
by adding a pendant edge to precisely one support vertex.

Lemma 7 Let G be a graph such that each vertex of G is

a leaf or a support vertex. Then, ctr2ðGÞ ¼ n� 1 if and

only if G 2 D1.

Proof Let ctr2ðGÞ ¼ n� 1. Since each vertex of G is a

leaf or a support vertex, it follows from Theorem 5 that

G has a strong support vertex. If G ¼ K1;3, then clearly

G 2 D1. Let G 6¼ K1;3. It follows from Observations 2 and

3 that G has exactly one support vertex which is adjacent to

exactly two leaves. Thus, G 2 D1.

Conversely, let G 2 D1. Then, G is obtained from a

graph in D [ fP3g, by adding a pendant edge to precisely

one support vertex of degree at least two. By Theorem 5,

we have ctr2ðGÞ� n� 1. Now, we show that

ctr2ðGÞ� n� 1. Let f be a ctr2ðGÞ-function. If G is obtained

from P3, then G ¼ K1;3 and clearly ctr2ðGÞ ¼ 3. Assume

G is obtained from H � K1 for some connected graph H of

order at least two. Let VðHÞ ¼ fu1; u2. . .; umg, vi be the

leaf adjacent to ui for each i, and w be the new pendant

vertex joined to um. Since f is a TR2DF of G, we have

jf ðuiÞj þ jf ðviÞj � 2 for each i and this implies that

ctr2ðGÞ� 2m ¼ n� 1 as desired. h

Regarding Lemmas 6 and 7, it is enough to consider

graphs G such that dðGÞ ¼ 1 and SðGÞ [ LðGÞ$VðGÞ.

Lemma 8 Let G be a connected graph of order n with

dðGÞ ¼ 1 and SðGÞ [ LðGÞ$VðGÞ. If ctr2ðGÞ ¼ n� 1, then

the induced subgraph G½VðGÞ � ðSðGÞ [ LðGÞÞ� is iso-

morphic to K1;K2;P3;C3; or C4.

Proof First, we show that G� ðSðGÞ [ LðGÞÞ is a con-

nected graph. Assume, to the contrary, that B1 and B2 are

two components of G� ðSðGÞ [ LðGÞÞ and xi 2 Bi for

i ¼ 1; 2. Since xi 62 SðGÞ [ LðGÞ, xi has two neighbors

x1i ; x
2
i each of degree at least two, for i ¼ 1; 2. Then, the

function f : VðGÞ ! Pðf1; 2gÞ defined by f ðx1Þ ¼ f ðx2Þ ¼

;, f ðx11Þ ¼ f ðx12Þ ¼ f2g and f ðxÞ ¼ f1g otherwise, is a

TR2DF of G of weight at most n� 2, a contradiction.

Hence, G is connected. Consider two cases.

Case 1 G½VðGÞ � ðSðGÞ [ LðGÞÞ� contains a cycle.

Assume C ¼ ðx1x2. . .xkÞ is a cycle of

G½VðGÞ � ðSðGÞ [ LðGÞÞ�. If k� 6, then the function f :

VðGÞ ! Pðf1; 2gÞ defined by f ðx1Þ ¼ f ðx2Þ ¼
f1g; f ðx3Þ ¼ f ðxkÞ ¼ ; and f ðxÞ ¼ f2g otherwise, is a
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TR2DF of G of weight n� 2, a contradiction. If k ¼ 5,

then since G is connected and VðGÞ 6¼ SðGÞ [ LðGÞ, we
may assume that x1 has a neighbor w outside V(C). Then,

the function f : VðGÞ ! Pðf1; 2gÞ defined by f ðx1Þ ¼
f ðwÞ ¼ f1g; f ðx2Þ ¼ f ðx5Þ ¼ ; and f ðxÞ ¼ f2g otherwise,

is a TR2DF of G of weight at most n� 2, a contradiction.

Thus, k� 4.

First let k ¼ 4. If C has a chord, say x1x3, then the

function f ¼ ðfx2; x4g;VðGÞ � fx1; x2; x4g; fx1g; ;Þ is a

TR2DF of G of weight n� 2, a contradiction. So C has

no chord. If G½VðGÞ � ðSðGÞ [ LðGÞÞ� 6¼ C, then we may

assume x1 has a neighbor w outside SðGÞ [ LðGÞ and the

function f : VðGÞ ! Pðf1; 2gÞ defined by f ðx4Þ ¼ f ðwÞ ¼
;, f ðx1Þ ¼ f2g and f ðxÞ ¼ f1g otherwise, is a TR2DF of

G of weight n� 2, a contradiction. Hence, G½VðGÞ �
ðSðGÞ [ LðGÞÞ� ffi C4 in this case.

Now, let k ¼ 3. If G½VðGÞ � ðSðGÞ [ LðGÞÞ� 6¼ C, then

we may assume x1 has a neighbor w outside SðGÞ [ LðGÞ
and the function f ¼ ðfw; x3g;VðGÞ � fx1;w; x3g; fx1g; ;Þ
is a TR2DF of G of weight n� 2, a contradiction. Thus,

G½VðGÞ � ðSðGÞ [ LðGÞÞ� ffi C3 in this case.

Case 2 G½VðGÞ � ðSðGÞ [ LðGÞÞ� is a tree.

If DðG½VðGÞ � ðSðGÞ [ LðGÞÞ�Þ � 3, then let x be a vertex

of maximum degree in G½VðGÞ � ðSðGÞ [ LðGÞÞ� and let

y1; y2; y3 be the neighbors of x in

G½VðGÞ � ðSðGÞ [ LðGÞÞ�. Then, the function f : VðGÞ !
Pðf1; 2gÞ defined by f ðy2Þ ¼ f ðy3Þ ¼ ;, f ðxÞ ¼ f ðy1Þ ¼
f2g and f ðxÞ ¼ f1g otherwise, is a TR2DF of G of weight

n� 2, a contradiction. Thus, DðG½VðGÞ � ðSðGÞ [
LðGÞÞ�Þ� 2 and so G½VðGÞ � ðSðGÞ [ LðGÞÞ� is a path

Pm ¼ x1x2. . .xm. If m� 4, then the function f : VðGÞ !
Pðf1; 2gÞ defined by f ðx1Þ ¼ f ðxmÞ ¼ ;, f ðxiÞ ¼ f2g for

2� i�m� 1, and f ðxÞ ¼ f1g otherwise, is a TR2DF of

G of weight n� 2, a contradiction. Thus, m� 3 and the

proof is complete. h

Recall that D ¼ fH � K1 j H is a connected graphg.
Now, we introduce the following families of graphs.

1. D2 is the family of graphs consisting of all graphs

G such that G is obtained from r� 2 graphs

G1;G2; . . .;Gr 2 D, by adding a new vertex, called

head, and joining it to a support vertex of Gi, for each

i ¼ 1; 2; . . .; r.

2. D3 is the family of graphs consisting of all graphs

G such that G is obtained from r� 1 graphs

G1;G2; . . .;Gr 2 D and P3, by adding a new vertex,

called head, and joining it to the support vertex of P3

and a support vertex of Gi, for each i ¼ 1; 2; . . .; r.

3. D4 is the family of graphs consisting of all graphs

G such that G is obtained from r� 1 graphs

G1;G2; . . .;Gr 2 D, where Gr ¼ K2, by adding a path

x1x2 and joining x1 to a support vertex of Gi, for each

i ¼ 1; 2; . . .; r � 1 and x2 to a leaf of Gr.

4. D5 is the family of graphs consisting of all graphs

G such that G is obtained from two graphs

G1;G2 2 D2, by adding a new vertex and joining it

to the head of Di for i ¼ 1; 2.

5. D6 is the family of graphs consisting of all graphs

G such that G is obtained from r� 2 graphs

G1;G2; . . .;Gr 2 D, by adding a path xyz, joining

x to a support vertex of Gi, for each i ¼ 1; 2; . . .; r � 1

and joining z to a support vertex of Gr.

6. D7 be a family of graphs consisting of all graphsG such

thatG is obtained from a cycle ðx1x2x3Þ by joining x1 to a

support vertex of finitely many graphsG1
1;G

1
2; . . .;G

1
r1
2

D ðr1 � 1Þ and x2 to a support vertex of finitely many

graphs G2
1;G

2
2; . . .;G

2
r2
2 D (possibly no graphs).

7. D8 be a family of graphs consisting of all graphs

G such that G is obtained from a cycle C4 ¼ ðx1x2x3x4Þ
by joining x1 to a support vertex of finitely many

graphs G1;G2; . . .;Gr 2 D ðr� 1Þ.

Lemma 9 Let G be a graph of order n. If G 2 [8
i¼1Di,

then ctr2ðGÞ ¼ n� 1.

Proof Let G 2 [8
i¼1Di. If G 2 D1, then ctr2ðTÞ ¼ n� 1 by

Lemma 7. Suppose T 2 [8
i¼2Di. By Theorem 5, we have

ctr2ðGÞ� n� 1. Now, we show that ctr2ðGÞ� n� 1. Sup-

pose f is a ctr2ðGÞ-function.
Let G 2 D2. Then, G is obtained from r� 2 graphs H1 �

K1;H2 � K1; . . .;Hr � K1 for each i, by adding a new

vertex and joining it to a support vertex of Hi for

i ¼ 1; 2; . . .; r. Let VðHiÞ ¼ fui1; u
i
2. . .; u

i
mi
g and vij be the

leaf adjacent to uij for each i and j. Clearly, jf ðuijÞj þ

jf ðvijÞj � 2 i, j and so ctr2ðGÞ ¼ xðf Þ�
Pr

i¼1 2jVðHiÞj ¼

n� 1 as desired.

Let G 2 D3. Then, G is obtained from r� 1 graphs H1 �
K1;H2 � K1; . . .;Hr � K1 for each i, by adding a new

vertex w and joining it to the support vertex of a path

P3 ¼ z1z2z3 and to a vertex of Hi, for each i ¼ 1; 2; . . .; r.

Let VðHiÞ ¼ fui1; u
i
2; . . .; u

i
mi
g and vij be the leaf adjacent to

uij for each i and j. Clearly, jf ðwÞj þ jf ðz1Þj þ jf ðz2Þj þ

jf ðz3Þj � 3 and jf ðuijÞj þ jf ðvijÞj � 2 for each i, j and so

ctr2ðGÞ ¼ xðf Þ� 3þ
Pr

i¼1 2jVðHiÞj ¼ n� 1 as desired.

Let G 2 D4. Then, G is obtained from r� 2 graphs H1 �
K1;H2 � K1; . . .;Hr�1 � K1 and Gr ¼ K2 ¼ z1z2 by adding

a path x1x2, joining x2 to z2 and x1 to a vertex of Hi, for

each i ¼ 1; 2; . . .; r � 1. Let VðHiÞ ¼ fui1; u
i
2; . . .; u

i
mi
g and

vij be the leaf adjacent to uij for each i and j. Clearly,

jf ðx1Þj þ jf ðx2Þj þ jf ðz1Þj þ jf ðz2Þj � 3 and as above we

have ctr2ðTÞ ¼ xðf Þ�
Pr

i¼1 2jVðHiÞj ¼ n� 1 as desired.
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Let G 2 D5. Then, G is obtained from graphs

H1
1 � K1;H

1
2 � K1; . . .;H

1
m1

� K1;H
2
1 � K1;H

2
2 � K1; . . .;

H2
m2

� K1, with m1;m2 � 2, by adding a path P3 ¼ x1x2x3,

and joining xi to a support vertex of Hi
j , for each j and

i ¼ 1; 3. To totally rainbowly dominate x2 we must have

jf ðx1Þj þ jf ðx2Þj þ jf ðx3Þj � 2 and as above case we obtain

ctr2ðGÞ ¼ xðf Þ

� 3þ
X

2

i¼1

X

mi

j¼1

X

x2VðHi
j
�K1Þ

jf ðxÞj

0

@

1

A

¼ 3þ
X

2

i¼1

X

mi

j¼1

jVðHi
j � K1Þj

� n� 1;

as desired. The proofs for the cases G 2 D6, G 2 D7 and

G 2 D8 are similar. h

Lemma 10 Let G be a connected graph of order n with

dðGÞ ¼ 1 and LðGÞ [ SðGÞ$VðGÞ. Then, ctr2ðGÞ ¼ n� 1

if and only if G 2 [8
i¼2Di.

Proof Sufficiency is true by Lemma 9. It is enough to prove

necessity. Let ctr2ðGÞ ¼ n� 1. Clearly, n� 4. If n ¼ 4, then

G ¼ K1;3 2 D1. Assume n� 5. If VðGÞ ¼ LðGÞ [ SðGÞ,

then G 2 D1 by Lemma 7. Let LðGÞ [ SðGÞ$VðGÞ. By

Lemma 8, G½VðGÞ � ðSðGÞ [ LðGÞÞ� is isomorphic to

K1;P2;P3;C3; or C4. We consider the following cases.

Case 1 G½VðGÞ � ðSðGÞ [ LðGÞÞ�ffi K1 ¼ w.

Let G1;G2; . . .;Gk be the components of G� w. We

deduce from G½VðGÞ � ðSðGÞ [ LðGÞÞ� ¼ w that k� 2,

jVðGiÞj � 2 for each i, and w is adjacent to a support

vertex wi of Gi for each i. It follows that Gi has a ctr2-

function gi such that 1 2 giðwiÞ for each i. If

ctr2ðGiÞ� jVðGiÞj � 1 for some i, say i ¼ 1, then the

function f : VðGÞ ! Pðf1; 2gÞ defined by f ðwÞ ¼
;; f ðuÞ ¼ g1ðuÞ for u 2 VðG1Þ, and f ðuÞ ¼ f2g otherwise,

is a TR2DF of T of weight n� 2, a contradiction. Thus,

ctr2ðGiÞ ¼ jVðGiÞj for each i. This implies that Gi 2 D [ P3

for 1� i� k. If Gi ¼ P3 ¼ y1wiy3 and Gj ¼ P3 ¼ y01wjy
0
3

for some i 6¼ j, then the function f : VðGÞ ! Pðf1; 2gÞ
defined by f ðy1Þ ¼ f ðy3Þ ¼ f ðy01Þ ¼ f ðy03Þ ¼ ;; f ðwiÞ ¼

f ðwjÞ ¼ f1; 2g; f ðwÞ ¼ 1, and f ðuÞ ¼ f1g otherwise, is a

TR2DF of T of weight at most n� 2, a contradiction. Thus

at most one of Gi’s is P3. This implies that G 2 D2 [ D3.

Case 2 G½VðGÞ � ðSðGÞ [ LðGÞÞ�ffi P2 ¼ x1x2.

Let Gi
1;G

i
2; . . .;G

i
mi

be the components of G� fx1; x2g

adjacent to xi for i ¼ 1; 2. Since x1 and x2 are not support

vertices, jVðGi
jÞj � 2 for i ¼ 1; 2 and each j. If m1;m2 � 2,

then the function f : VðGÞ ! Pðf1; 2gÞ defined by f ðx1Þ ¼

f ðx2Þ ¼ ;; f ðuÞ ¼ f1g for u 2 VðG1
1Þ [ VðG2

1Þ, and f ðuÞ ¼

f2g otherwise, is a TR2DF of T of weight n� 2, a

contradiction. Assume that m2 ¼ 1. Since x1; x2 are the

only vertices of G which are not leaf or support vertex, x1 is

adjacent to a support vertex of G1
j for each 1� j�m1 and

x2 is adjacent to a support vertex w2 of G2
1. If

ctr2ðG
2
1Þ� jVðG2

1Þj � 1, then let g be a ctr2ðG
2
1Þ-function

so that 1 2 gðw2Þ and define f : VðGÞ ! Pðf1; 2gÞ by

f ðx2Þ ¼ ;; f ðuÞ ¼ gðuÞ for u 2 VðG2
1Þ, and f ðuÞ ¼ f2g

otherwise. Clearly, f is a TR2DF of T of weight at most

n� 2, a contradiction. Thus, ctr2ðG
2
1Þ ¼ jVðG2

1Þj. It is easy

to verify that G2
1 6¼ P3 and so G2

1 2 D.

If G2
1 ¼ w2w

0
2, then as above we can see that ctr2ðG

1
j Þ ¼

jVðG1
j Þj for each j, and so G 2 D4. Let jVðG

2
1Þj � 4. Then,

G2
1 has a ctr2-function g2 so that g2ðw2Þ ¼ f1; 2g. If m1 � 2,

then the function f : VðGÞ ! Pðf1; 2gÞ defined by f ðx1Þ ¼

f ðx2Þ ¼ ;; f ðuÞ ¼ g2ðuÞ for u 2 VðG2
1Þ, f ðuÞ ¼ f1g for u 2

VðG1
1Þ and f ðuÞ ¼ f2g otherwise, is a TR2DF of T of

weight n� 2, a contradiction. Therefore, m1 ¼ 1. As

above, we can see that ctr2ðG
1
1Þ ¼ jVðG1

1Þj and G1
1 6¼ P3.

Let x1 be adjacent to the support vertex w1 of G1
1. If

jVðG1
1Þj � 4, then let g1 be a ctr2ðG

1
1Þ-function such that

g1ðw1Þ ¼ f1; 2g and define the function f : VðGÞ !
Pðf1; 2gÞ by f ðx1Þ ¼ f ðx2Þ ¼ ;; f ðuÞ ¼ g1ðuÞ for

u 2 VðG1
1Þ, and f ðuÞ ¼ g2ðuÞ for u 2 VðG2

1Þ. Then, f is a

TR2DF of T of weight at most n� 2 which is a

contradiction. Thus, jVðG1
1Þj ¼ 2 that implies G 2 D4.

Case 3 G½VðGÞ � ðSðGÞ [ LðGÞÞ�ffi P3 ¼ x1x2x3.

If degðx2Þ� 3, then the function f : VðGÞ ! Pðf1; 2gÞ
defined by f ðx1Þ ¼ f ðx3Þ ¼ ;; f ðx2Þ ¼ f1g, and f ðuÞ ¼ f2g
otherwise, is a TR2DF of T of weight n� 2, a contradic-

tion. Hence, degðx2Þ ¼ 2. Assume Gi
1;G

i
2; . . .;G

i
mi

are the

components of G� fx1; x2; x3g adjacent to xi for i ¼ 1; 3.

Since x1 and x3 are not support vertices, jVðGi
jÞj � 2 for

each i and j ¼ 1; 3. If ctr2ðG
1
j Þ� jVðG1

j Þj � 1 for some j,

then let g be a ctr2ðG
1
j Þ-function and define f : VðGÞ !

Pðf1; 2gÞ by f ðx3Þ ¼ ;; f ðx2Þ ¼ f1g; f ðuÞ ¼ gðuÞ for

u 2 VðG1
j Þ, and f ðuÞ ¼ f2g otherwise. Clearly, f is a

TR2DF of T of weight at most n� 2, a contradiction. Thus,

ctr2ðG
1
j Þ ¼ jVðG1

j Þj for each 1� i� j�m1. If G1
j ¼ P3 ¼

y1y2y3 for some j, then define f : VðGÞ ! Pðf1; 2gÞ by

f ðy1Þ ¼ f ðy3Þ ¼ f ðx2Þ ¼ ;; f ðy2Þ ¼ f1; 2g; f ðx1Þ ¼ f1g and
f ðuÞ ¼ f2g otherwise, when x1y2 2 EðGÞ, and by f ðy1Þ ¼
f ðx3Þ ¼ ;; f ðx1Þ ¼ f1g and f ðuÞ ¼ f2g otherwise, when

x1y1 2 EðGÞ. Clearly, f is a TR2DF of T of weight at most

n� 2, a contradiction. Thus, G1
j 6¼ P3 and so G1

j 2 D for

each j. Similarly, G2
j 2 D for each 1� j�m3. If

jVðG1
j Þj � 4 for some j, and x1 is adjacent to a leaf of G1

j

such as v, then the function f : VðGÞ ! Pðf1; 2gÞ defined
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by f ðx3Þ ¼ f ðvÞ ¼ ;; f ðx1Þ ¼ f ðx2Þ ¼ f1g, and f ðuÞ ¼ f2g
otherwise, is a TR2DF of T of weight at most n� 2, a

contradiction. Thus, x1 is adjacent to a support vertex of G1
j

for 1� j�m1. Similarly, x3 is adjacent to a support vertex

of G2
j for each 1� j�m3. Thus, G 2 D6 if m1;m2 � 2 and

G 2 D7 if m1 ¼ 1 or m2 ¼ 1.

Case 4 G½VðGÞ � ðSðGÞ [ LðGÞÞ�ffi C3 ¼ ðx1x2x3Þ.
If degðxiÞ� 3 for i ¼ 1; 2; 3, then the function f : VðGÞ !
Pðf1; 2gÞ defined by f ðx1Þ ¼ f ðx2Þ ¼ ;; f ðx3Þ ¼ f1g, and
f ðuÞ ¼ f2g otherwise, is a TR2DF of T of weight at most

n� 2, a contradiction. Henceforth, we may assume that

degðx3Þ ¼ 2. Since G is connected and dðGÞ ¼ 1, we may

assume that degðx1Þ� 3. Let G1;G2; . . .;Gk be the com-

ponents of G� fx1; x2; x3g. Since x1; x2; x3 are not support

vertices, we have jVðGiÞj � 2 for each i. If

ctr2ðGiÞ� jVðGiÞj � 1 for some i, say i ¼ 1, then let g be

a ctr2ðG1Þ-function and define f : VðGÞ ! Pðf1; 2gÞ by

f ðx1Þ ¼ ;; f ðx2Þ ¼ f1g; f ðx3Þ ¼ f2g; f ðuÞ ¼ gðuÞ for

u 2 VðG1Þ, and f ðuÞ ¼ f1g otherwise. Obviously, f is a

TR2DF of T of weight at most n� 2, a contradiction. Thus,

ctr2ðGiÞ ¼ jVðGiÞj for each i. As in Case 3, we can see that

Gi 2 D for each i. If jVðGiÞj � 4 for some i, say i ¼ 1, and

x1 is adjacent to a leaf of G1 such as v, then the function

f : VðGÞ ! Pðf1; 2gÞ defined by f ðx3Þ ¼ f ðvÞ ¼ ;;
f ðx1Þ ¼ f1g, and f ðuÞ ¼ f2g otherwise, is a TR2DF of

T of weight at most n� 2, a contradiction. Thus, x1 is

adjacent to a support vertex of some Gi. Similarly, x2 is

adjacent to a support vertex of some Gj if degðx2Þ� 3. It

follows that G 2 D8.

Case 5 G½VðGÞ � ðSðGÞ [ LðGÞÞ�ffi C4 ¼ ðx1x2x3x4Þ.
Let G1;G2; . . .;Gk be the components of G� fx1; x2; x3;
x4g. Since x1; x2; x3; x4 are not support vertices, jVðGiÞj � 2

for each i. If ctr2ðGiÞ� jVðGiÞj � 1 for some i, say i ¼ 1,

then let g be a ctr2ðG1Þ-function and define f : VðGÞ !
Pðf1; 2gÞ by f ðx1Þ ¼ ;; f ðx2Þ ¼ f1g; f ðx3Þ ¼ f ðx4Þ ¼
f2g; f ðuÞ ¼ gðuÞ for u 2 VðG1Þ, and f ðuÞ ¼ f1g otherwise.

Clearly, f is a TR2DF of T of weight at most n� 2 which is

a contradiction. Thus, ctr2ðGiÞ ¼ jVðGiÞj for each i. As in

Case 3, we can see that Gi 2 D for each i. If

degðx1Þ� 3; degðx2Þ� 3, then the function f : VðGÞ !
Pðf1; 2gÞ defined by f ðx1Þ ¼ f ðx2Þ ¼ ;; f ðx3Þ ¼
f ðx4Þ ¼ f1g, and f ðuÞ ¼ f2g otherwise, is a TR2DF of

T of weight at most n� 2, a contradiction. If

degðx1Þ� 3; degðx3Þ� 3, then the function f : VðGÞ !
Pðf1; 2gÞ defined by f ðx4Þ ¼ f ðx2Þ ¼ ;; f ðx1Þ ¼ f1g;
f ðx3Þ ¼ f2g, and f ðuÞ ¼ f2g otherwise, is a TR2DF of

T of weight at most n� 2, a contradiction. Henceforth,

exactly one of the xis (i ¼ 1; 2; 3) has degree greater than 2.

Assume that degðx1Þ� 3. If jVðGiÞj � 4 for some i,

say i ¼ 1, and x1 is adjacent to a leaf of G1 such as v,

then the function f : VðGÞ ! Pðf1; 2gÞ defined by

f ðx4Þ ¼ f ðvÞ ¼ ;; f ðx3Þ ¼ f1g, and f ðuÞ ¼ f2g otherwise,

is a TR2DF of T of weight at most n� 2, a contradiction.

Thus, x1 is adjacent to a support vertex of each Gi. This

implies that G 2 D8. This completes the proof. h

Considering Lemmas 6 and 11, we are now ready to

state the main theorem of this paper.

Theorem 11 Let G be a connected graph of order

n. Then, ctr2ðGÞ ¼ n� 1 if and only if G 2 fC3;C4;C5g

[ ð[8
i¼1DiÞ.
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