Graphs with Large Total 2-Rainbow Domination Number

H. Abdollahzadeh Ahangar ${ }^{1} \cdot$ M. Khaibari ${ }^{1} \cdot$ N. Jafari Rad ${ }^{2} \cdot$ S. M. Sheikholeslami ${ }^{3}$

Received: 19 April 2016/Accepted: 13 December 2017
© Shiraz University 2018

Abstract

Let $G=(V, E)$ be a simple graph with no isolated vertex. A 2-rainbow dominating function (2RDF) of G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2\}$ such that for any vertex $v \in V(G)$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N(v)} f(u)=\{1,2\}$ is fulfilled, where $N(v)$ is the open neighborhood of v. A 2-rainbow dominating function f is called a total 2-rainbow dominating function (T2RDF) if the subgraph of G induced by $\{v \in V(G) \mid f(v) \neq \emptyset\}$ has no isolated vertex. The weight of a T2RDF f is defined as $w(f)=\sum_{v \in V(G)}|f(v)|$. The total 2-rainbow domination number, $\gamma_{t r 2}(G)$, is the minimum weight of a total 2-rainbow dominating function on G. In this paper, we characterize all graphs G whose total 2 -rainbow domination number is equal to their order minus one.

Keywords 2 -rainbow dominating function $\cdot 2$-rainbow domination number \cdot Total 2 -rainbow dominating function . Total 2-rainbow domination number

Mathematics Subject Classification 05C69

1 Introduction

For notation and graph theory terminology, we in general follow Haynes et al. (1998a, b) and Henning and Yeo (2013). In this paper, we continue the study of rainbow domination number in graphs. Specifically, let G be a simple graph with vertex set $V=V(G)$, edge set $E=E(G)$ and with no isolated vertex. The order $|V|$ of G is denoted by n and size $|E|$ of G is denoted by m. For every vertex $v \in V$, the open neighborhood $N_{G}(v)=N(v)$ is the set $\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is the set $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in$

[^0]V is $\operatorname{deg}_{G}(v)=\operatorname{deg}(\mathrm{v})=|\mathrm{V}(\mathrm{v})|$. The minimum and the maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\cup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S]=N(S) \cup S$. A leaf is a vertex of degree one, a support vertex is a vertex adjacent to a leaf, a weak support vertex is a support vertex adjacent to exactly one leaf, and a strong support vertex is a support vertex adjacent to at least two leaves. We denote the set of leaves and support vertices of G by $L(G)$ and $S(G)$, respectively. We also denote by L_{v} the set of all leaves adjacent to a support vertex v. We write K_{n} for the complete graph of order n, C_{n} for a cycle of order n and P_{n} for a path of order n. The diameter of G, denoted by $\operatorname{diam}(G)$, is the maximum value among minimum distances between all pairs of vertices of G. The girth of G, denoted by $g(G)$, is the minimum length of a cycle in G. The corona graph $H \odot K_{1}$ of a graph H is a graph obtained from H by attaching a leaf to every vertex of H. For a subset S of vertices of G, we denote by $G[S]$ the subgraph induced by S.

A subset S of vertices of a graph G is a dominating set of G if every vertex in $V(G)-S$ has a neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set S in a graph with no

Springer
isolated vertex is called a total dominating set of G if $G[S]$ has no isolated vertex. The total domination number $\gamma_{t}(G)$ is the minimum cardinality of a total dominating set of G. The literature on the subject of domination parameters in graphs, through 1998, has been surveyed in Haynes et al. (1998a, b), and the subject of total domination in graphs, through 2013, has been surveyed in Henning and Yeo (2013). Recently, Liu and Chang (2013) introduced the concept of total Roman domination in graphs albeit in a more general setting. And very recently has been studied by Abdollahzadeh Ahangar et al. $(2016,2017)$.

A 2 -rainbow dominating function (2 RDF) of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2\}$ such that for any vertex $v \in V(G)$ with $f(v)=\emptyset$ the condition $\cup_{u \in N(v)} f(u)=\{1,2\}$ is fulfilled, where $N(v)$ is the open neighborhood of v. The weight of a $2 \mathrm{RDF} f$ is defined as $w(f)=\sum_{v \in V(G)}|f(v)|$. The minimum weight of a 2-rainbow dominating function is called the 2 -rainbow domination number of G, denoted by $\gamma_{r 2}(G)$. The concept of 2-rainbow domination was introduced by Brešar et al. (2008), and has been studied by several authors, for example Chang et al. (2010), Chellali and Jafari Rad (2013), Chunling et al. (2009), Brešar and Sumenjak (2007), Dehgardi et al. (2015), Falahat et al. (2014), Meierling et al. (2011), Sheikholeslami and Volkmann (2012), Wu and Jafari Rad (2013), Wu and Xing (2010) and Xu (2009).

If f is a 2-rainbow dominating function in a graph G, then clearly $\{v \in V(G) \mid f(v) \neq \emptyset\}$ is a dominating set of G. Abdollahzadeh Ahangar et al. (2018a) considered a variant of 2-rainbow dominating functions f such that $\{v \in$ $V(G) \mid f(v) \neq \emptyset\}$ is a total dominating set of G. They thus introduced the concept of total 2-rainbow domination in graphs. A 2-rainbow dominating function f is called a total 2-rainbow dominating function, or just T2RDF if the subgraph of G induced by $\{v \in V(G) \mid f(v) \neq \emptyset\}$ has no isolated vertex. The total 2-rainbow domination number, $\gamma_{t r 2}(G)$, is the minimum weight of a total 2-rainbow dominating function on G. Clearly, $\gamma_{t r 2}(G)$ is well defined for any graph G with no isolated vertex, since assigning $\{1\}$ to every vertex yields a total 2-rainbow dominating function and hence
$\gamma_{t r 2}(G) \leq|V(G)|$.
It is shown in Abdollahzadeh Ahangar et al. (2018b) that the decision version of the total 2-rainbow domination problem is NP-complete.

A 2-rainbow dominating function f can be represented by the ordered partition $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}, V_{12}^{f}\right)$, where $V_{0}^{f}=\{v \mid$ $f(v)=\emptyset\}, V_{1}^{f}=\{v \mid f(v)=\{1\}\}, V_{2}^{f}=\{v \mid f(v)=\{2\}\}$, and $V_{12}^{f}=\{v \mid f(v)=\{1,2\}\}$. Thus, f is a total 2-rainbow
dominating function if the subgraph of G induced by $V_{1}^{f} \cup$ $V_{2}^{f} \cup V_{12}^{f}$ has no isolated vertex.

Note that if $G_{1}, G_{2}, \ldots, G_{s}$ are the components of G, then $\gamma_{t r 2}(G)=\sum_{i=1}^{s} \gamma_{t r 2}\left(G_{i}\right)$. Hence, it would be sufficient to consider only connected graphs in the study of total 2-rainbow domination.

Our purpose in this paper is to characterize all the connected graphs G whose total 2-rainbow domination is equal to their order minus one.

We make use of the following observations in this paper.

Observation 1 If G is a connected graph of order $n \geq 4$, and G has a support vertex x with $\left|L_{x}\right| \geq 2$, then $\gamma_{t r 2}(G) \leq n-1$.

Observation 2 If G is a connected graph of order n, different from $K_{1,3}$, and G has a support vertex x with $\left|L_{x}\right| \geq 3$, then $\gamma_{t r 2}(G) \leq n-2$.

Observation 3 If G is a connected graph of order n and G has two support vertices x and y with $\left|L_{x}\right| \geq 2$ and $\left|L_{y}\right| \geq 2$, then $\gamma_{t r 2}(G) \leq n-2$.
Observation 4 If G is a connected graph of order n with $\operatorname{diam}(G)=2$, then $\gamma_{t r 2}(G) \leq 2 \delta(G)+1$.
Proof Let x be a vertex of minimum degree $\delta(G)$ and define $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $f(x)=\{1\}, f(u)=\{1,2\}$ for $u \in N(x)$ and $f(y)=\emptyset$ if $y \notin N[x]$. Clearly, f is a T2RDF on G of weight $2 \delta(G)+1$ and so $\gamma_{t r 2}(G) \leq 2 \delta(G)+1$.

2 Graphs with Large Total 2-Rainbow Domination Number

Assume $\quad \mathcal{D}=\left\{H \odot K_{1} \mid H\right.$ is a connected graph $\}$. In Abdollahzadeh Ahangar et al. (2018a), the authors characterized all graphs G for which $\gamma_{t r 2}(G)=n$ as follows:

Theorem 5 (Abdollahzadeh Ahangar et al. 2018a) Let G be a connected graph of order n. Then, $\gamma_{t r 2}(G)=n$ if and only if $G \in \mathcal{D} \cup\left\{P_{3}\right\}$.

Here, we characterize all connected graphs G of order $n \geq 3$ with $\gamma_{t r 2}(G)=n-1$. We start with some lemmas.

Lemma 6 Let G be a connected graph of order n with $\delta(G) \geq 2$. Then, $\gamma_{t r 2}(G)=n-1$ if and only if $G=C_{3}, C_{4}$ or C_{5}.

Proof One side is clear. Let $\gamma_{t r 2}(G)=n-1$. If $\operatorname{diam}(G) \geq 3$ and $w_{1} w_{2} \ldots w_{k}$ is a diametral path in G, then let $u_{1} \in N\left(w_{1}\right)-\left\{w_{2}\right\}, v_{1} \in N\left(w_{k}\right)-\left\{w_{k-1}\right\}$, and define the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $f\left(u_{1}\right)=f\left(v_{1}\right)=$
$\{1\}, f\left(w_{1}\right)=f\left(w_{k}\right)=\emptyset$ and $f(w)=\{2\}$ otherwise. It is easy to verify that f is a T2RDF on G of weight $n-2$, a contradiction. Thus, $\operatorname{diam}(G) \leq 2$. If $\operatorname{diam}(G)=1$, then G is the complete graph of order n and we deduce from $\gamma_{t r 2}\left(K_{n}\right)=2$ that $G=K_{3}$ by the assumption. Henceforth, we assume $\operatorname{diam}(G)=2$. By Observation 4, we have $\delta(G) \geq \frac{n-2}{2}$. Let x be a vertex of minimum degree $\delta(G)$, $N(x)=\left\{x_{1}, x_{2} \ldots, x_{k}\right\} \quad$ and $\quad X=V(G)-N[x]$. Since $\operatorname{diam}(G)=2 \quad$ and $\quad \delta(G) \geq \frac{n-2}{2}$, we have $1 \leq|X| \leq \frac{n}{2}$. Assume $X=\left\{z_{1}, z_{2}, \ldots, z_{|X|}\right\}$.

If $|X|=1$ and $\delta(G) \geq 3$, then the function $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\})$ defined by $f(x)=f\left(z_{1}\right)=\emptyset, f\left(x_{1}\right)=\{1\}, f(v)=$ $\{2\}$ for $v \in N(x)-\left\{x_{1}\right\}$, is a TR2DF of G of weight $n-2$, a contradiction. If $|X|=1$ and $\delta(G)=2$, then clearly $G=C_{4}$. Let $|X| \geq 2$.

If $\Delta(G[X]) \geq 2$ and $y \in X$ has degree at least two in $G[X]$, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f(y)=$ $\{1\}, f(v)=\emptyset$ for $v \in N(y) \cap X, f(u)=\{2\}$ otherwise, is a TR2DF of G of weight at most $n-2$, a contradiction. Assume that $\Delta(G[X]) \leq 1$. Then, all components of $G[X]$ are K_{1} or K_{2}. It follows that each vertex in X has at least $\delta(G)-1$ neighbors in $N(x)$ and every two vertices in X have at least $\delta(G)-2$ common neighbors in $N(x)$. If $\delta(G) \geq 4$, then the function f : $V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=f\left(x_{2}\right)=\{1\}, f(u)=$ \emptyset for $u \in X$ and $f(v)=\{2\}$ otherwise, is a TR2DF of G of weight at most $n-2$, a contradiction. If $G[X]$ has two isolated vertices, say z_{1}, z_{2}, then $N\left(z_{1}\right)=N\left(z_{2}\right)=N(x)$ and the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(z_{1}\right)=f\left(z_{2}\right)=$ $\emptyset, f\left(x_{1}\right)=\{1\}$ and $f(v)=\{2\}$ otherwise, is a TR2DF of G of weight $n-2$, a contradiction. Henceforth, we assume that $\delta(G) \leq 3$ and $G[X]$ has at most one isolated vertex that implies $G[X]$ has a K_{2} component, say $z_{1} z_{2}$.

First let $\delta(G)=3$. Then, we have $n \leq 8$ and $|X| \leq 4$. If $|X|=4$, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=f\left(x_{2}\right)=\{1,2\}, f(x)=f\left(x_{3}\right)=\{1\}$ and $f(u)=\emptyset$ for $u \in X$, is a TR2DF of G of weight $n-2$, a contradiction. We may assume, therefore, that $|X| \leq 3$. Since $\delta(G)=3$, we may assume that $x_{1} \in N\left(z_{1}\right) \cap N\left(z_{2}\right)$. Now, it is easy to verify that the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=$ $\{1\}, f(x)=f\left(x_{2}\right)=f\left(x_{3}\right)=\{2\}$ and $f(u)=\emptyset$ for $u \in X$, is a TR2DF of G of weight $n-2$ which leads to a contradiction.

Now let $\delta(G)=2$ and let without loss of generality that $\operatorname{deg}\left(x_{1}\right) \geq \operatorname{deg}\left(x_{2}\right)$. Then, we have $n \leq 6$ and $|X| \leq 3$. If $n=6$, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by
$f\left(x_{1}\right)=\{1,2\}, f(x)=\{1\}, f\left(x_{2}\right)=\{2\}$ and $f(u)$
$=\emptyset$ otherwise,
when $\Delta(G[X])=0$ or $\Delta(G[X])=1$ and $\operatorname{deg}\left(x_{1}\right) \geq \operatorname{deg}\left(x_{2}\right)$, and by
$f\left(x_{1}\right)=\{1\}, f(x)=f(z)=\emptyset$ for exactly one $\mathrm{z} \in N\left(x_{1}\right)$
$\cap Z$, and $f(u)=\{2\}$ otherwise,
if $\Delta(G[X])=1$ and $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)$, is a TR2DF of G of weight 4 , a contradiction. Thus, $n=5$ and so $|X|=2$. It is easy to check that $G=C_{5}$ in this case and the proof is complete.

Assume \mathcal{D}_{1} is the family of graphs consisting of all graphs G such that G is obtained from a graph in $\mathcal{D} \cup\left\{P_{3}\right\}$ by adding a pendant edge to precisely one support vertex.

Lemma 7 Let G be a graph such that each vertex of G is a leaf or a support vertex. Then, $\gamma_{t r 2}(G)=n-1$ if and only if $G \in \mathcal{D}_{1}$.

Proof Let $\gamma_{t r 2}(G)=n-1$. Since each vertex of G is a leaf or a support vertex, it follows from Theorem 5 that G has a strong support vertex. If $G=K_{1,3}$, then clearly $G \in \mathcal{D}_{1}$. Let $G \neq K_{1,3}$. It follows from Observations 2 and 3 that G has exactly one support vertex which is adjacent to exactly two leaves. Thus, $G \in \mathcal{D}_{1}$.

Conversely, let $G \in \mathcal{D}_{1}$. Then, G is obtained from a graph in $\mathcal{D} \cup\left\{P_{3}\right\}$, by adding a pendant edge to precisely one support vertex of degree at least two. By Theorem 5, we have $\gamma_{t r 2}(G) \leq n-1$. Now, we show that $\gamma_{t r 2}(G) \geq n-1$. Let f be a $\gamma_{t r 2}(G)$-function. If G is obtained from P_{3}, then $G=K_{1,3}$ and clearly $\gamma_{t r 2}(G)=3$. Assume G is obtained from $H \odot K_{1}$ for some connected graph H of order at least two. Let $V(H)=\left\{u_{1}, u_{2} \ldots, u_{m}\right\}, v_{i}$ be the leaf adjacent to u_{i} for each i, and w be the new pendant vertex joined to u_{m}. Since f is a TR2DF of G, we have $\left|f\left(u_{i}\right)\right|+\left|f\left(v_{i}\right)\right| \geq 2$ for each i and this implies that $\gamma_{t r 2}(G) \geq 2 m=n-1$ as desired.

Regarding Lemmas 6 and 7, it is enough to consider graphs G such that $\delta(G)=1$ and $S(G) \cup L(G) \varsubsetneqq V(G)$.

Lemma 8 Let G be a connected graph of order n with $\delta(G)=1$ and $S(G) \cup L(G) \varsubsetneqq V(G)$. If $\gamma_{t r 2}(G)=n-1$, then the induced subgraph $G[V(G)-(S(G) \cup L(G))]$ is isomorphic to $K_{1}, K_{2}, P_{3}, C_{3}$, or C_{4}.

Proof First, we show that $G-(S(G) \cup L(G))$ is a connected graph. Assume, to the contrary, that B_{1} and B_{2} are two components of $G-(S(G) \cup L(G))$ and $x_{i} \in B_{i}$ for $i=1,2$. Since $x_{i} \notin S(G) \cup L(G), x_{i}$ has two neighbors x_{i}^{1}, x_{i}^{2} each of degree at least two, for $i=1,2$. Then, the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=f\left(x_{2}\right)=$ $\emptyset, f\left(x_{1}^{1}\right)=f\left(x_{2}^{1}\right)=\{2\}$ and $f(x)=\{1\}$ otherwise, is a TR2DF of G of weight at most $n-2$, a contradiction. Hence, G is connected. Consider two cases.
Case $1 G[V(G)-(S(G) \cup L(G))]$ contains a cycle.
Assume $\quad C=\left(x_{1} x_{2} \ldots x_{k}\right) \quad$ is a cycle of $G[V(G)-(S(G) \cup L(G))]$. If $k \geq 6$, then the function f : $V(G) \rightarrow \mathcal{P}(\{1,2\}) \quad$ defined \quad by $\quad f\left(x_{1}\right)=f\left(x_{2}\right)=$ $\{1\}, f\left(x_{3}\right)=f\left(x_{k}\right)=\emptyset$ and $f(x)=\{2\}$ otherwise, is a

Springer

TR2DF of G of weight $n-2$, a contradiction. If $k=5$, then since G is connected and $V(G) \neq S(G) \cup L(G)$, we may assume that x_{1} has a neighbor w outside $V(C)$. Then, the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=$ $f(w)=\{1\}, f\left(x_{2}\right)=f\left(x_{5}\right)=\emptyset$ and $f(x)=\{2\}$ otherwise, is a TR2DF of G of weight at most $n-2$, a contradiction. Thus, $k \leq 4$.

First let $k=4$. If C has a chord, say $x_{1} x_{3}$, then the function $f=\left(\left\{x_{2}, x_{4}\right\}, V(G)-\left\{x_{1}, x_{2}, x_{4}\right\},\left\{x_{1}\right\}, \emptyset\right)$ is a TR2DF of G of weight $n-2$, a contradiction. So C has no chord. If $G[V(G)-(S(G) \cup L(G))] \neq C$, then we may assume x_{1} has a neighbor w outside $S(G) \cup L(G)$ and the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{4}\right)=f(w)=$ $\emptyset, f\left(x_{1}\right)=\{2\}$ and $f(x)=\{1\}$ otherwise, is a TR2DF of G of weight $n-2$, a contradiction. Hence, $G[V(G)-$ $(S(G) \cup L(G))] \cong C_{4}$ in this case.

Now, let $k=3$. If $G[V(G)-(S(G) \cup L(G))] \neq C$, then we may assume x_{1} has a neighbor w outside $S(G) \cup L(G)$ and the function $f=\left(\left\{w, x_{3}\right\}, V(G)-\left\{x_{1}, w, x_{3}\right\},\left\{x_{1}\right\}, \emptyset\right)$ is a TR2DF of G of weight $n-2$, a contradiction. Thus, $G[V(G)-(S(G) \cup L(G))] \cong C_{3}$ in this case.

Case $2 G[V(G)-(S(G) \cup L(G))]$ is a tree.
If $\Delta(G[V(G)-(S(G) \cup L(G))]) \geq 3$, then let x be a vertex of maximum degree in $G[V(G)-(S(G) \cup L(G))]$ and let y_{1}, y_{2}, y_{3} be the neighbors of x in $G[V(G)-(S(G) \cup L(G))]$. Then, the function $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\})$ defined by $f\left(y_{2}\right)=f\left(y_{3}\right)=\emptyset, f(x)=f\left(y_{1}\right)=$ $\{2\}$ and $f(x)=\{1\}$ otherwise, is a TR2DF of G of weight $n-2$, a contradiction. Thus, $\Delta(G[V(G)-(S(G) \cup$ $L(G))]) \leq 2$ and so $G[V(G)-(S(G) \cup L(G))]$ is a path $P_{m}=x_{1} x_{2} \ldots x_{m}$. If $m \geq 4$, then the function $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=f\left(x_{m}\right)=\emptyset, f\left(x_{i}\right)=\{2\}$ for $2 \leq i \leq m-1$, and $f(x)=\{1\}$ otherwise, is a TR2DF of G of weight $n-2$, a contradiction. Thus, $m \leq 3$ and the proof is complete.

Recall that $\mathcal{D}=\left\{H \odot K_{1} \mid H\right.$ is a connected graph $\}$. Now, we introduce the following families of graphs.

1. \mathcal{D}_{2} is the family of graphs consisting of all graphs G such that G is obtained from $r \geq 2$ graphs $G_{1}, G_{2}, \ldots, G_{r} \in \mathcal{D}$, by adding a new vertex, called head, and joining it to a support vertex of G_{i}, for each $i=1,2, \ldots, r$.
2. \mathcal{D}_{3} is the family of graphs consisting of all graphs G such that G is obtained from $r \geq 1$ graphs $G_{1}, G_{2}, \ldots, G_{r} \in \mathcal{D}$ and P_{3}, by adding a new vertex, called head, and joining it to the support vertex of P_{3} and a support vertex of G_{i}, for each $i=1,2, \ldots, r$.
3. \mathcal{D}_{4} is the family of graphs consisting of all graphs G such that G is obtained from $r \geq 1$ graphs $G_{1}, G_{2}, \ldots, G_{r} \in \mathcal{D}$, where $G_{r}=K_{2}$, by adding a path
$x_{1} x_{2}$ and joining x_{1} to a support vertex of G_{i}, for each $i=1,2, \ldots, r-1$ and x_{2} to a leaf of G_{r}.
4. \mathcal{D}_{5} is the family of graphs consisting of all graphs G such that G is obtained from two graphs $G_{1}, G_{2} \in \mathcal{D}_{2}$, by adding a new vertex and joining it to the head of D_{i} for $i=1,2$.
5. \mathcal{D}_{6} is the family of graphs consisting of all graphs G such that G is obtained from $r \geq 2$ graphs $G_{1}, G_{2}, \ldots, G_{r} \in \mathcal{D}$, by adding a path $x y z$, joining x to a support vertex of G_{i}, for each $i=1,2, \ldots, r-1$ and joining z to a support vertex of G_{r}.
6. $\quad \mathcal{D}_{7}$ be a family of graphs consisting of all graphs G such that G is obtained from a cycle $\left(x_{1} x_{2} x_{3}\right)$ by joining x_{1} to a support vertex of finitely many graphs $G_{1}^{1}, G_{2}^{1}, \ldots, G_{r_{1}}^{1} \in$ $\mathcal{D}\left(r_{1} \geq 1\right)$ and x_{2} to a support vertex of finitely many graphs $G_{1}^{2}, G_{2}^{2}, \ldots, G_{r_{2}}^{2} \in \mathcal{D}$ (possibly no graphs).
7. \mathcal{D}_{8} be a family of graphs consisting of all graphs G such that G is obtained from a cycle $C_{4}=\left(x_{1} x_{2} x_{3} x_{4}\right)$ by joining x_{1} to a support vertex of finitely many graphs $G_{1}, G_{2}, \ldots, G_{r} \in \mathcal{D}(r \geq 1)$.

Lemma 9 Let G be a graph of order n. If $G \in \cup_{i=1}^{8} \mathcal{D}_{i}$, then $\gamma_{t r 2}(G)=n-1$.
Proof Let $G \in \cup_{i=1}^{8} \mathcal{D}_{i}$. If $G \in \mathcal{D}_{1}$, then $\gamma_{t r 2}(T)=n-1$ by Lemma 7. Suppose $T \in \cup_{i=2}^{8} \mathcal{D}_{i}$. By Theorem 5, we have $\gamma_{t r 2}(G) \leq n-1$. Now, we show that $\gamma_{t r 2}(G) \geq n-1$. Suppose f is a $\gamma_{t r 2}(G)$-function.

Let $G \in \mathcal{D}_{2}$. Then, G is obtained from $r \geq 2$ graphs $H_{1} \odot$ $K_{1}, H_{2} \odot K_{1}, \ldots, H_{r} \odot K_{1}$ for each i, by adding a new vertex and joining it to a support vertex of H_{i} for $i=1,2, \ldots, r$. Let $V\left(H_{i}\right)=\left\{u_{1}^{i}, u_{2}^{i} \ldots, u_{m_{i}}^{i}\right\}$ and v_{j}^{i} be the leaf adjacent to u_{j}^{i} for each i and j. Clearly, $\left|f\left(u_{j}^{i}\right)\right|+$ $\left|f\left(v_{j}^{i}\right)\right| \geq 2 i, j$ and so $\gamma_{t r 2}(G)=\omega(f) \geq \sum_{i=1}^{r} 2\left|V\left(H_{i}\right)\right|=$ $n-1$ as desired.

Let $G \in \mathcal{D}_{3}$. Then, G is obtained from $r \geq 1$ graphs $H_{1} \odot$ $K_{1}, H_{2} \odot K_{1}, \ldots, H_{r} \odot K_{1}$ for each i, by adding a new vertex w and joining it to the support vertex of a path $P_{3}=z_{1} z_{2} z_{3}$ and to a vertex of H_{i}, for each $i=1,2, \ldots, r$. Let $V\left(H_{i}\right)=\left\{u_{1}^{i}, u_{2}^{i}, \ldots, u_{m_{i}}^{i}\right\}$ and v_{j}^{i} be the leaf adjacent to u_{j}^{i} for each i and j. Clearly, $|f(w)|+\left|f\left(z_{1}\right)\right|+\left|f\left(z_{2}\right)\right|+$ $\left|f\left(z_{3}\right)\right| \geq 3$ and $\left|f\left(u_{j}^{i}\right)\right|+\left|f\left(v_{j}^{i}\right)\right| \geq 2$ for each i, j and so $\gamma_{t r 2}(G)=\omega(f) \geq 3+\sum_{i=1}^{r} 2\left|V\left(H_{i}\right)\right|=n-1$ as desired.

Let $G \in \mathcal{D}_{4}$. Then, G is obtained from $r \geq 2$ graphs $H_{1} \odot$ $K_{1}, H_{2} \odot K_{1}, \ldots, H_{r-1} \odot K_{1}$ and $G_{r}=K_{2}=z_{1} z_{2}$ by adding a path $x_{1} x_{2}$, joining x_{2} to z_{2} and x_{1} to a vertex of H_{i}, for each $i=1,2, \ldots, r-1$. Let $V\left(H_{i}\right)=\left\{u_{1}^{i}, u_{2}^{i}, \ldots, u_{m_{i}}^{i}\right\}$ and v_{j}^{i} be the leaf adjacent to u_{j}^{i} for each i and j. Clearly, $\left|f\left(x_{1}\right)\right|+\left|f\left(x_{2}\right)\right|+\left|f\left(z_{1}\right)\right|+\left|f\left(z_{2}\right)\right| \geq 3$ and as above we have $\gamma_{t r 2}(T)=\omega(f) \geq \sum_{i=1}^{r} 2\left|V\left(H_{i}\right)\right|=n-1$ as desired.

Springer

Let $G \in \mathcal{D}_{5}$. Then, G is obtained from graphs $H_{1}^{1} \odot K_{1}, H_{2}^{1} \odot K_{1}, \ldots, H_{m_{1}}^{1} \odot K_{1}, H_{1}^{2} \odot K_{1}, H_{2}^{2} \odot K_{1}, \ldots$, $H_{m_{2}}^{2} \odot K_{1}$, with $m_{1}, m_{2} \geq 2$, by adding a path $P_{3}=x_{1} x_{2} x_{3}$, and joining x_{i} to a support vertex of H_{j}^{i}, for each j and $i=1,3$. To totally rainbowly dominate x_{2} we must have $\left|f\left(x_{1}\right)\right|+\left|f\left(x_{2}\right)\right|+\left|f\left(x_{3}\right)\right| \geq 2$ and as above case we obtain

$$
\gamma_{t r 2}(G)=\omega(f)
$$

$$
\begin{aligned}
& \geq 3+\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left(\sum_{x \in V\left(H_{j}^{i} \odot K_{1}\right)}|f(x)|\right) \\
& =3+\sum_{i=1}^{2} \sum_{j=1}^{m_{i}}\left|V\left(H_{j}^{i} \odot K_{1}\right)\right| \\
& \geq n-1
\end{aligned}
$$

as desired. The proofs for the cases $G \in \mathcal{D}_{6}, G \in \mathcal{D}_{7}$ and $G \in \mathcal{D}_{8}$ are similar.

Lemma 10 Let G be a connected graph of order n with $\delta(G)=1$ and $L(G) \cup S(G) \varsubsetneqq V(G)$. Then, $\gamma_{t r 2}(G)=n-1$ if and only if $G \in \cup_{i=2}^{8} \mathcal{D}_{i}$.
Proof Sufficiency is true by Lemma 9. It is enough to prove necessity. Let $\gamma_{t r 2}(G)=n-1$. Clearly, $n \geq 4$. If $n=4$, then $G=K_{1,3} \in \mathcal{D}_{1}$. Assume $n \geq 5$. If $V(G)=L(G) \cup S(G)$, then $G \in \mathcal{D}_{1}$ by Lemma 7. Let $L(G) \cup S(G) \varsubsetneqq V(G)$. By Lemma 8, $G[V(G)-(S(G) \cup L(G))]$ is isomorphic to $K_{1}, P_{2}, P_{3}, C_{3}$, or C_{4}. We consider the following cases.

Case $1 G[V(G)-(S(G) \cup L(G))] \cong K_{1}=w$.
Let $G_{1}, G_{2}, \ldots, G_{k}$ be the components of $G-w$. We deduce from $G[V(G)-(S(G) \cup L(G))]=w$ that $k \geq 2$, $\left|V\left(G_{i}\right)\right| \geq 2$ for each i, and w is adjacent to a support vertex w_{i} of G_{i} for each i. It follows that G_{i} has a $\gamma_{t r 2^{-}}$ function g_{i} such that $1 \in g_{i}\left(w_{i}\right)$ for each i. If $\gamma_{t r 2}\left(G_{i}\right) \leq\left|V\left(G_{i}\right)\right|-1$ for some i, say $i=1$, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f(w)=$ $\emptyset, f(u)=g_{1}(u)$ for $u \in V\left(G_{1}\right)$, and $f(u)=\{2\}$ otherwise, is a TR2DF of T of weight $n-2$, a contradiction. Thus, $\gamma_{t r 2}\left(G_{i}\right)=\left|V\left(G_{i}\right)\right|$ for each i. This implies that $G_{i} \in \mathcal{D} \cup P_{3}$ for $1 \leq i \leq k$. If $G_{i}=P_{3}=y_{1} w_{i} y_{3}$ and $G_{j}=P_{3}=y_{1}^{\prime} w_{j} y_{3}^{\prime}$ for some $i \neq j$, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(y_{1}\right)=f\left(y_{3}\right)=f\left(y_{1}^{\prime}\right)=f\left(y_{3}^{\prime}\right)=\emptyset, f\left(w_{i}\right)=$ $f\left(w_{j}\right)=\{1,2\}, f(w)=1$, and $f(u)=\{1\}$ otherwise, is a TR2DF of T of weight at most $n-2$, a contradiction. Thus at most one of G_{i} 's is P_{3}. This implies that $G \in \mathcal{D}_{2} \cup \mathcal{D}_{3}$.

Case $2 G[V(G)-(S(G) \cup L(G))] \cong P_{2}=x_{1} x_{2}$.
Let $G_{1}^{i}, G_{2}^{i}, \ldots, G_{m_{i}}^{i}$ be the components of $G-\left\{x_{1}, x_{2}\right\}$ adjacent to x_{i} for $i=1,2$. Since x_{1} and x_{2} are not support vertices, $\left|V\left(G_{j}^{i}\right)\right| \geq 2$ for $i=1,2$ and each j. If $m_{1}, m_{2} \geq 2$, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=$ $f\left(x_{2}\right)=\emptyset, f(u)=\{1\}$ for $u \in V\left(G_{1}^{1}\right) \cup V\left(G_{1}^{2}\right)$, and $f(u)=$
$\{2\}$ otherwise, is a TR2DF of T of weight $n-2$, a contradiction. Assume that $m_{2}=1$. Since x_{1}, x_{2} are the only vertices of G which are not leaf or support vertex, x_{1} is adjacent to a support vertex of G_{j}^{1} for each $1 \leq j \leq m_{1}$ and x_{2} is adjacent to a support vertex w_{2} of G_{1}^{2}. If $\gamma_{t r 2}\left(G_{1}^{2}\right) \leq\left|V\left(G_{1}^{2}\right)\right|-1$, then let g be a $\gamma_{t r 2}\left(G_{1}^{2}\right)$-function so that $1 \in g\left(w_{2}\right)$ and define $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $f\left(x_{2}\right)=\emptyset, f(u)=g(u)$ for $u \in V\left(G_{1}^{2}\right)$, and $f(u)=\{2\}$ otherwise. Clearly, f is a TR2DF of T of weight at most $n-2$, a contradiction. Thus, $\gamma_{t r 2}\left(G_{1}^{2}\right)=\left|V\left(G_{1}^{2}\right)\right|$. It is easy to verify that $G_{1}^{2} \neq P_{3}$ and so $G_{1}^{2} \in \mathcal{D}$.

If $G_{1}^{2}=w_{2} w_{2}^{\prime}$, then as above we can see that $\gamma_{t r 2}\left(G_{j}^{1}\right)=$ $\left|V\left(G_{j}^{1}\right)\right|$ for each j, and so $G \in \mathcal{D}_{4}$. Let $\left|V\left(G_{1}^{2}\right)\right| \geq 4$. Then, G_{1}^{2} has a $\gamma_{t r 2}$-function g_{2} so that $g_{2}\left(w_{2}\right)=\{1,2\}$. If $m_{1} \geq 2$, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=$ $f\left(x_{2}\right)=\emptyset, f(u)=g_{2}(u)$ for $u \in V\left(G_{1}^{2}\right), f(u)=\{1\}$ for $u \in$ $V\left(G_{1}^{1}\right)$ and $f(u)=\{2\}$ otherwise, is a TR2DF of T of weight $n-2$, a contradiction. Therefore, $m_{1}=1$. As above, we can see that $\gamma_{t r 2}\left(G_{1}^{1}\right)=\left|V\left(G_{1}^{1}\right)\right|$ and $G_{1}^{1} \neq P_{3}$. Let x_{1} be adjacent to the support vertex w_{1} of G_{1}^{1}. If $\left|V\left(G_{1}^{1}\right)\right| \geq 4$, then let g_{1} be a $\gamma_{t r 2}\left(G_{1}^{1}\right)$-function such that $g_{1}\left(w_{1}\right)=\{1,2\}$ and define the function $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\})$ by $f\left(x_{1}\right)=f\left(x_{2}\right)=\emptyset, f(u)=g_{1}(u) \quad$ for $u \in V\left(G_{1}^{1}\right)$, and $f(u)=g_{2}(u)$ for $u \in V\left(G_{1}^{2}\right)$. Then, f is a TR2DF of T of weight at most $n-2$ which is a contradiction. Thus, $\left|V\left(G_{1}^{1}\right)\right|=2$ that implies $G \in \mathcal{D}_{4}$.

Case $3 G[V(G)-(S(G) \cup L(G))] \cong P_{3}=x_{1} x_{2} x_{3}$. If $\operatorname{deg}\left(x_{2}\right) \geq 3$, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=f\left(x_{3}\right)=\emptyset, f\left(x_{2}\right)=\{1\}$, and $f(u)=\{2\}$ otherwise, is a TR2DF of T of weight $n-2$, a contradiction. Hence, $\operatorname{deg}\left(x_{2}\right)=2$. Assume $G_{1}^{i}, G_{2}^{i}, \ldots, G_{m_{i}}^{i}$ are the components of $G-\left\{x_{1}, x_{2}, x_{3}\right\}$ adjacent to x_{i} for $i=1,3$. Since x_{1} and x_{3} are not support vertices, $\left|V\left(G_{j}^{i}\right)\right| \geq 2$ for each i and $j=1,3$. If $\gamma_{t r 2}\left(G_{j}^{1}\right) \leq\left|V\left(G_{j}^{1}\right)\right|-1$ for some j, then let g be a $\gamma_{t r 2}\left(G_{j}^{1}\right)$-function and define $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\})$ by $f\left(x_{3}\right)=\emptyset, f\left(x_{2}\right)=\{1\}, f(u)=g(u)$ for $u \in V\left(G_{j}^{1}\right)$, and $f(u)=\{2\}$ otherwise. Clearly, f is a TR2DF of T of weight at most $n-2$, a contradiction. Thus, $\gamma_{t r 2}\left(G_{j}^{1}\right)=\left|V\left(G_{j}^{1}\right)\right|$ for each $1 \leq i \leq j \leq m_{1}$. If $G_{j}^{1}=P_{3}=$ $y_{1} y_{2} y_{3}$ for some j, then define $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $f\left(y_{1}\right)=f\left(y_{3}\right)=f\left(x_{2}\right)=\emptyset, f\left(y_{2}\right)=\{1,2\}, f\left(x_{1}\right)=\{1\}$ and $f(u)=\{2\}$ otherwise, when $x_{1} y_{2} \in E(G)$, and by $f\left(y_{1}\right)=$ $f\left(x_{3}\right)=\emptyset, f\left(x_{1}\right)=\{1\}$ and $f(u)=\{2\}$ otherwise, when $x_{1} y_{1} \in E(G)$. Clearly, f is a TR2DF of T of weight at most $n-2$, a contradiction. Thus, $G_{j}^{1} \neq P_{3}$ and so $G_{j}^{1} \in \mathcal{D}$ for each j. Similarly, $G_{j}^{2} \in \mathcal{D}$ for each $1 \leq j \leq m_{3}$. If $\left|V\left(G_{j}^{1}\right)\right| \geq 4$ for some j, and x_{1} is adjacent to a leaf of G_{j}^{1} such as v, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined
by $f\left(x_{3}\right)=f(v)=\emptyset, f\left(x_{1}\right)=f\left(x_{2}\right)=\{1\}$, and $f(u)=\{2\}$ otherwise, is a TR2DF of T of weight at most $n-2$, a contradiction. Thus, x_{1} is adjacent to a support vertex of G_{j}^{1} for $1 \leq j \leq m_{1}$. Similarly, x_{3} is adjacent to a support vertex of G_{j}^{2} for each $1 \leq j \leq m_{3}$. Thus, $G \in \mathcal{D}_{6}$ if $m_{1}, m_{2} \geq 2$ and $G \in \mathcal{D}_{7}$ if $m_{1}=1$ or $m_{2}=1$.

Case $4 G[V(G)-(S(G) \cup L(G))] \cong C_{3}=\left(x_{1} x_{2} x_{3}\right)$. If $\operatorname{deg}\left(x_{i}\right) \geq 3$ for $i=1,2,3$, then the function $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=f\left(x_{2}\right)=\emptyset, f\left(x_{3}\right)=\{1\}$, and $f(u)=\{2\}$ otherwise, is a TR2DF of T of weight at most $n-2$, a contradiction. Henceforth, we may assume that $\operatorname{deg}\left(x_{3}\right)=2$. Since G is connected and $\delta(G)=1$, we may assume that $\operatorname{deg}\left(x_{1}\right) \geq 3$. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the components of $G-\left\{x_{1}, x_{2}, x_{3}\right\}$. Since x_{1}, x_{2}, x_{3} are not support vertices, we have $\left|V\left(G_{i}\right)\right| \geq 2$ for each i. If $\gamma_{t r 2}\left(G_{i}\right) \leq\left|V\left(G_{i}\right)\right|-1$ for some i, say $i=1$, then let g be a $\gamma_{t r 2}\left(G_{1}\right)$-function and define $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $f\left(x_{1}\right)=\emptyset, f\left(x_{2}\right)=\{1\}, f\left(x_{3}\right)=\{2\}, f(u)=g(u) \quad$ for $u \in V\left(G_{1}\right)$, and $f(u)=\{1\}$ otherwise. Obviously, f is a TR2DF of T of weight at most $n-2$, a contradiction. Thus, $\gamma_{t r 2}\left(G_{i}\right)=\left|V\left(G_{i}\right)\right|$ for each i. As in Case 3, we can see that $G_{i} \in \mathcal{D}$ for each i. If $\left|V\left(G_{i}\right)\right| \geq 4$ for some i, say $i=1$, and x_{1} is adjacent to a leaf of G_{1} such as v, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\}) \quad$ defined \quad by $\quad f\left(x_{3}\right)=f(v)=\emptyset$, $f\left(x_{1}\right)=\{1\}$, and $f(u)=\{2\}$ otherwise, is a TR2DF of T of weight at most $n-2$, a contradiction. Thus, x_{1} is adjacent to a support vertex of some G_{i}. Similarly, x_{2} is adjacent to a support vertex of some G_{j} if $\operatorname{deg}\left(x_{2}\right) \geq 3$. It follows that $G \in \mathcal{D}_{8}$.

Case $5 G[V(G)-(S(G) \cup L(G))] \cong C_{4}=\left(x_{1} x_{2} x_{3} x_{4}\right)$.
Let $G_{1}, G_{2}, \ldots, G_{k}$ be the components of $G-\left\{x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}\right\}$. Since $x_{1}, x_{2}, x_{3}, x_{4}$ are not support vertices, $\left|V\left(G_{i}\right)\right| \geq 2$ for each i. If $\gamma_{t r 2}\left(G_{i}\right) \leq\left|V\left(G_{i}\right)\right|-1$ for some i, say $i=1$, then let g be a $\gamma_{t r 2}\left(G_{1}\right)$-function and define $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\}) \quad$ by $\quad f\left(x_{1}\right)=\emptyset, f\left(x_{2}\right)=\{1\}, f\left(x_{3}\right)=f\left(x_{4}\right)=$ $\{2\}, f(u)=g(u)$ for $u \in V\left(G_{1}\right)$, and $f(u)=\{1\}$ otherwise. Clearly, f is a TR2DF of T of weight at most $n-2$ which is a contradiction. Thus, $\gamma_{t r 2}\left(G_{i}\right)=\left|V\left(G_{i}\right)\right|$ for each i. As in Case 3, we can see that $G_{i} \in \mathcal{D}$ for each i. If $\operatorname{deg}\left(x_{1}\right) \geq 3, \operatorname{deg}\left(x_{2}\right) \geq 3$, then the function $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=f\left(x_{2}\right)=\emptyset, f\left(x_{3}\right)=$ $f\left(x_{4}\right)=\{1\}$, and $f(u)=\{2\}$ otherwise, is a TR2DF of T of weight at most $n-2$, a contradiction. If $\operatorname{deg}\left(x_{1}\right) \geq 3, \operatorname{deg}\left(x_{3}\right) \geq 3$, then the function $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2\})$ defined by $f\left(x_{4}\right)=f\left(x_{2}\right)=\emptyset, f\left(x_{1}\right)=\{1\}$, $f\left(x_{3}\right)=\{2\}$, and $f(u)=\{2\}$ otherwise, is a TR2DF of T of weight at most $n-2$, a contradiction. Henceforth, exactly one of the $x_{i} \mathrm{~s}(i=1,2,3)$ has degree greater than 2 . Assume that $\operatorname{deg}\left(x_{1}\right) \geq 3$. If $\left|V\left(G_{i}\right)\right| \geq 4$ for some i, say $i=1$, and x_{1} is adjacent to a leaf of G_{1} such as v, then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by
$f\left(x_{4}\right)=f(v)=\emptyset, f\left(x_{3}\right)=\{1\}$, and $f(u)=\{2\}$ otherwise, is a TR2DF of T of weight at most $n-2$, a contradiction. Thus, x_{1} is adjacent to a support vertex of each G_{i}. This implies that $G \in \mathcal{D}_{8}$. This completes the proof.

Considering Lemmas 6 and 11, we are now ready to state the main theorem of this paper.

Theorem 11 Let G be a connected graph of order n. Then, $\gamma_{t r 2}(G)=n-1$ if and only if $G \in\left\{C_{3}, C_{4}, C_{5}\right\}$ $\cup\left(\cup_{i=1}^{8} \mathcal{D}_{i}\right)$.

Acknowledgements The authors are grateful to anonymous referees for their remarks and suggestions that helped improve the manuscript.

References

Abdollahzadeh Ahangar H, Amjadi J, Sheikholeslami SM, Soroudi M (2017) On the total Roman domination number of graph. Ars Combin (to appear)
Abdollahzadeh Ahangar H, Henning MA, Samodivkin V, Yero IG (2016) Total Roman domination in graphs. Appl Anal Discret Math 10:501-517
Abdollahzadeh Ahangar H, Amjadi J, Jafari Rad N, Samodivkin V (2018a) Total k-rainbow domination numbers in graphs. Commun Comb Optim 3:37-50
Abdollahzadeh Ahangar H, Amjadi J, Chellali M, Nazari-Moghaddam S, Shahbazi L, Sheikholeslami SM (2018b) Total 2-rainbow domination numbers in trees (submitted)
Chang GJ, Wu J, Zhu X (2010) Rainbow domination on trees. Discret Appl Math 158:8-12
Chellali M, Jafari Rad N (2013) On 2-rainbow domination and Roman domination in graphs. Australas J Comb 56:85-93
Chunling T, Xiaohui L, Yuansheng Y, Meiqin L (2009) 2-rainbow domination of generalized Petersen graphs $P(n ; 2)$. Discret Appl Math 157:1932-1937
Brešar B, Henning MA, Rall DF (2008) Rainbow domination in graphs. Taiwan J Math 12:201-213
Brešar B, Sumenjak TK (2007) On the 2-rainbow domination in graphs. Discret Appl Math 155:2394-2400
Dehgardi N, Sheikholeslami SM, Volkmann L (2015) The rainbow domination subdivision numbers of graphs. Mat Vesnik 67:102-114
Falahat M, Sheikholeslami SM, Volkmann L (2014) New bounds on the rainbow domination subdivision number. Filomat 28:615-622
Haynes TW, Hedetniemi ST, Slater PJ (1998) Fundamentals of domination in graphs. Marcel Dekker, New York
Haynes TW, Hedetniemi ST, Slater PJ (1998) Domination in graphs: advanced topics. Marcel Dekker Inc., New York
Henning MA, Yeo A (2013) Total domination in graphs. New York, Springer
Liu C-H, Chang GJ (2013) Roman domination on strongly chordal graphs. J Comb Optim 26:608-619
Meierling D, Sheikholeslami SM, Volkmann L (2011) NordhausGaddum bounds on the k - rainbow domatic number of a graph. Appl Math Lett 24:1758-1761
Sheikholeslami SM, Volkmann L (2012) The k-rainbow domatic number of a graph. Discuss Math Graph Theory 32:129-140
Wu Y, Jafari Rad N (2013) Bounds on the 2-rainbow domination number of graphs. Graphs Comb 29:1125-1133
Wu Y, Xing H (2010) Note on 2-rainbow domination and Roman domination in graphs. Appl Math Lett 23:706-709
Xu G (2009) 2-rainbow domination of generalized Petersen graphs $P(n ; 3)$. Discret Appl Math 157:2570-2573

[^0]: H. Abdollahzadeh Ahangar
 ha.ahangar@nit.ac.ir
 N. Jafari Rad
 n.jafarirad@gmail.com
 S. M. Sheikholeslami
 s.m.sheikholeslami@azaruniv.edu

 1 Department of Mathematics, Babol Noshirvani University of Technology, Babol, Islamic Republic of Iran
 2 Department of Mathematics, Shahrood University of Technology, Shahrood, Islamic Republic of Iran
 3 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Islamic Republic of Iran

