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a b s t r a c t

A subset S of vertices in a graph G = (V , E) is a global offensive alliance if for every
vertex v not in S, at least half of the vertices in the closed neighborhood of v are in S. The
global offensive alliance number ofG is theminimumcardinality among all global offensive
alliances in G. A global offensive alliance D is called a global strong offensive alliance if for
every vertex v not in S, more than half of the vertices in the closed neighborhood of v are
in S. The global strong offensive alliance number of G is the minimum cardinality among
all global strong offensive alliances in G. In this paper, we present new upper bounds for
the global offensive alliance number as well as the global strong offensive alliance number
of a graph. We improve previous upper bounds given in Harutyunyan (2014).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For graph theory notation and terminology not given here we refer to [11], and for the probabilistic methods notation
and terminology we refer to [1]. We consider finite and simple graphs G with vertex set V = V (G) and edge set E(G). The
number of vertices of G is called the order of G and is denoted by n = n(G). The open neighborhood of a vertex v ∈ V is
N(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is N[v] = N(v) ∪ {v}. The degree of a vertex v, denoted by
deg(v) (or degG(v) to refer to G), is the cardinality of its open neighborhood. We denote by δ(G) and ∆(G), the minimum and
maximum degrees among all vertices of G, respectively. For a subset S of vertices of G, the subgraph of G induced by S is
denoted by G[S]. A subset S of vertices is an independent set if G[S] has no edge. The independence number, α(G) of G, is the
maximum cardinality among all independent sets.

In [6,7], Fink and Jacobson generalized the concept of independent sets. For a positive integer k, a subset S of vertices of
a graph G is k-independent if the maximum degree of the subgraph induced by the vertices of S is less than or equal to k− 1.
The k-independence number αk(G) is the maximum cardinality among all k-independent sets in G.

Hedetniemi et al. [12] introduced the concept of alliances in graphs. This concept has been further considered by several
other authors, see for example [10,13,16]. Favaron et al. [5] initiated the study of offensive alliances in graphs. Some types of
alliance numbers namely global offensive alliance number and global strong offensive alliance number have been considered
byRodríguez-Velazquez et al. [17]. A subset S of vertices of a graphG = (V , E) is a global offensive alliance if for every v ∈ V−S,
|N[v]∩S| ≥ |N[v]−S|. Theminimum cardinality among all global offensive alliances ofG is called the global offensive alliance
number of G, and is denoted by γo(G). A subset S of vertices of a graph G = (V , E) is a global strong offensive alliance if for
every v ∈ V − S, |N[v] ∩ S| > |N[v] − S|. The minimum cardinality among all global strong offensive alliances of G is called
the global strong offensive alliance number of G, and is denoted by γ̂o(G). The concept of global offensive alliance in graphs
was further studied in, for example, [2,8,9,14,15,18,19]. Balakrishnan et al. [2] showed that the decision problem for global
offensive alliance is NP-complete for general graphs. Several upper bounds for the offensive alliance and global offensive
alliance numbers are given by Rodríguez-Velazquez et al. [14,15,17] and Harutyunyan [8,9].
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Harutyunyan [9] presented the following probabilistic upper bounds for the global offensive alliance and global strong
offensive alliance numbers.

Theorem 1 (Harutyunyan [9]). For any graph G = (V , E) of order n, and 1/2 > α > 0,

γo(G) ≤

(
1

2
+ α

)
n +

(
1

2
− α

)∑

v∈V

exp

(
−

α2

1 + 2α
deg(v)

)
n.

Theorem 2 (Harutyunyan [9]). For any graph G = (V , E) of order n, and 1/2 > α > 0,

γ̂o(G) ≤

(
1

2
+ α

)
n +

∑

v∈V

exp

(
−

α2

1 + 2α
(deg(v) + 1)

)
n.

In this paper, we obtain new probabilistic upper bounds for the global offensive alliance number as well as the global
strong offensive alliance number of a graph, and improve both Theorems 1 and 2. Our proofs are in similar lines with the
proofs of Theorems 1 and 2. The following lower bound on the k-independence number of a graph plays a fundamental role
in this paper.

Theorem 3 (Favaron [4]). For every graph G and every positive integer k,

αk(G) ≥
∑

v∈V

k

1 + k deg(v)
.

We also use the well-known Chernoff bound as follows:

Theorem 4 (Chernoff, [1,3]). For any a > 0 and random variable X that has binomial distribution with probability p and mean

pn, P[X − pn < −a] < e
−a2

2pn .

2. New bounds

We first present a new upper bound for the global offensive alliance number of a graph.

Theorem 5. Let G = (V , E) be a graph of order n, maximum degree ∆ and minimum degree δ. For 1/2 > α > 0,

γo(G) ≤

(
1

2
+ α

)
n +

(
1

2
− α

)∑

v∈V

exp

(
−

α2

1 + 2α
deg(v)

)
n −

n(⌊ δ
2
⌋ + 1)

1 + (⌊ δ
2
⌋ + 1)∆

(
1

2
+ α

)1+∆

.

Proof. We follow the proof of Theorem 1 given in [9]. Create a subset S ⊆ V by choosing each vertex v ∈ V , independently,
with probability p = 1/2 + α. The random set S is going to be part of the global offensive alliance. For every vertex v ∈ V ,
let Xv denote the number of vertices in the neighborhood of v that are in S. Let

Y =

{
v ∈ V − S : Xv ≤

⌊
deg(v)

2

⌋}
.

Let S ′ = {v : N[v] ⊆ S}, and D be a maximum (⌊ δ
2
⌋ + 1)-independent set in G[S ′]. For any vertex v ∈ D, degG[D](v) ≤ ⌊ δ

2
⌋,

and so |N(v) ∩ (S − D)| = deg(v) − degG[D](v) ≥ deg(v) − ⌊ δ
2
⌋ ≥

deg(v)

2
. Thus (S − D) ∪ Y is a global offensive alliance in

G. We now estimate the expectation of |(S − D) ∪ Y |. Clearly, E(|(S − D) ∪ Y |) ≤ E(|S|) + E(|Y |) − E(|D|), and E(|S|) = np.
Note that Xv is a binomial (deg(v), p) random variable for any vertex v ∈ V . Letting a = εpn, where ε = 1 − 1

2p
, Theorem 4

implies that

Pr

(
Xv ≤

deg(v)

2

)
= Pr

(
Xv ≤ (1 − ε)p deg(v)

)
< e

−ε2 deg(v)p
2 = e

−(1− 1
2p

)2 deg(v)p

2 .

Then

Pr(v ∈ Y ) = Pr(v ̸∈ S)Pr

(
Xv ≤

deg(v)

2

)
≤ (1 − p)e

−(1− 1
2p

)2
deg(v)p

2 .

Thus, E(|Y |) ≤
∑

v∈V (1 − p)e
−(1− 1

2p
)2 deg(v)p

2 . Now

E(|S| + |Y |) ≤ np +
∑

v∈V

(1 − p)e
−(1− 1

2p
)2 deg(v)p

2

=

(
1

2
+ α

)
n +

(
1

2
− α

)∑

v∈V

exp

(
−

α2

1 + 2α
deg(v)

)
n.
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We next estimate the expectation of |D|. By Theorem 3, |D| ≥
∑

v∈S′

(⌊ δ
2
⌋+1)

1+(⌊ δ
2
⌋+1)degG[S′](v)

. Thus,

E(|D|) ≥ E

(∑

v∈S′

(⌊ δ
2
⌋ + 1)

1 + (⌊ δ
2
⌋ + 1)degG[S′](v)

)

≥
∑

v∈V

(⌊ δ
2
⌋ + 1)

1 + (⌊ δ
2
⌋ + 1)degG(v)

Pr(v ∈ S ′)

=
∑

v∈V

(⌊ δ
2
⌋ + 1)

1 + (⌊ δ
2
⌋ + 1)degG(v)

p1+degG(v)

≥
∑

v∈V

(⌊ δ
2
⌋ + 1)

1 + (⌊ δ
2
⌋ + 1)degG(v)

p1+∆

≥
n(⌊ δ

2
⌋ + 1)

1 + (⌊ δ
2
⌋ + 1)∆

(
1

2
+ α

)1+∆

.

Thus the result follows. ■

We next present a new upper bound for the global strong offensive alliance number of a graph.

Theorem 6. Let G = (V , E) be a graph of order n, maximum degree ∆ and minimum degree δ. For 1/2 > α > 0,

γ̂o(G) ≤

(
1

2
+ α

)
n +

∑

v∈V

exp

(
−

α2

1 + 2α
(deg(v) + 1)

)
n −

n(⌊ δ−1
2

⌋ + 1)

1 + (⌊ δ−1
2

⌋ + 1)∆

(
1

2
+ α

)1+∆

.

Proof. We follow the same proof of Theorem 5 given in [9]. Create a subset S ⊆ V by choosing each vertex v ∈ V ,
independently, with probability p = 1/2 + α. For every vertex v ∈ V , let Xv denote the number of vertices in the
neighborhood of v that are in S. Let

Y =

{
v ∈ V − S : Xv <

⌊
deg(v) + 1

2

⌋}
.

Let S ′ = {v : N[v] ⊆ S}, andD be amaximum (⌊ δ−1
2

⌋+1)-independent set in G[S ′]. For any vertex v ∈ D, degG[D](v) ≤ ⌊ δ−1
2

⌋,

and so |N(v)∩ (S−D)| = deg(v)−degG[D](v) ≥ deg(v)−⌊ δ−1
2

⌋ >
deg(v)

2
. Thus (S−D)∪Y is a global strong offensive alliance

in G. Clearly, E(|S|) = np. Note that Xv is a binomial (deg(v), p) random variable for any vertex v ∈ V . Letting a = εpn, where
ε = 1 − 1

2p
, Theorem 4 implies that

Pr

(
Xv <

deg(v) + 1

2

)
= Pr(Xv < (1 − ε)p(deg(v) + 1)) < e

−ε2p(deg(v)+1)
2 = e

−(1− 1
2p

)2p
(deg(v)+1)

2 .

Thus,

E(|S| + |Y |) ≤ np +
∑

v∈V

e
−(1− 1

2p
)2p(deg(v)+1)

2

=

(
1

2
+ α

)
n +

∑

v∈V

exp

(
−

α2

1 + 2α
(deg(v) + 1)

)
n.

As before, we can see that

E(|D|) ≥
n(⌊ δ−1

2
⌋ + 1)

1 + (⌊ δ−1
2

⌋ + 1)∆

(
1

2
+ α

)1+∆

.

Thus the result follows. ■
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