Note

A note on the global offensive alliances in graphs

Nader Jafari Rad
Department of Mathematics, Shahed University, Tehran, Iran

A R T I C L E INFO

Article history:

Received 1 June 2017
Received in revised form 4 April 2018
Accepted 6 April 2018
Available online 5 June 2018

Keywords:

Global offensive alliances
Global strong offensive alliances
Probabilistic methods

Abstract

A subset S of vertices in a graph $G=(V, E)$ is a global offensive alliance if for every vertex v not in S, at least half of the vertices in the closed neighborhood of v are in S. The global offensive alliance number of G is the minimum cardinality among all global offensive alliances in G. A global offensive alliance D is called a global strong offensive alliance if for every vertex v not in S, more than half of the vertices in the closed neighborhood of v are in S. The global strong offensive alliance number of G is the minimum cardinality among all global strong offensive alliances in G. In this paper, we present new upper bounds for the global offensive alliance number as well as the global strong offensive alliance number of a graph. We improve previous upper bounds given in Harutyunyan (2014).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For graph theory notation and terminology not given here we refer to [11], and for the probabilistic methods notation and terminology we refer to [1]. We consider finite and simple graphs G with vertex set $V=V(G)$ and edge set $E(G)$. The number of vertices of G is called the order of G and is denoted by $n=n(G)$. The open neighborhood of a vertex $v \in V$ is $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. The degree of a vertex v, denoted by $\operatorname{deg}(v)$ (or $\operatorname{deg}_{G}(v)$ to refer to G), is the cardinality of its open neighborhood. We denote by $\delta(G)$ and $\Delta(G)$, the minimum and maximum degrees among all vertices of G, respectively. For a subset S of vertices of G, the subgraph of G induced by S is denoted by $G[S]$. A subset S of vertices is an independent set if $G[S]$ has no edge. The independence number, $\alpha(G)$ of G, is the maximum cardinality among all independent sets.

In [6,7], Fink and Jacobson generalized the concept of independent sets. For a positive integer k, a subset S of vertices of a graph G is k-independent if the maximum degree of the subgraph induced by the vertices of S is less than or equal to $k-1$. The k-independence number $\alpha_{k}(G)$ is the maximum cardinality among all k-independent sets in G.

Hedetniemi et al. [12] introduced the concept of alliances in graphs. This concept has been further considered by several other authors, see for example [10,13,16]. Favaron et al. [5] initiated the study of offensive alliances in graphs. Some types of alliance numbers namely global offensive alliance number and global strong offensive alliance number have been considered by Rodríguez-Velazquez et al. [17]. A subset S of vertices of a graph $G=(V, E)$ is a global offensive alliance if for every $v \in V-S$, $|N[v] \cap S| \geq|N[v]-S|$. The minimum cardinality among all global offensive alliances of G is called the global offensive alliance number of G, and is denoted by $\gamma_{0}(G)$. A subset S of vertices of a graph $G=(V, E)$ is a global strong offensive alliance if for every $v \in V-S,|N[v] \cap S|>|N[v]-S|$. The minimum cardinality among all global strong offensive alliances of G is called the global strong offensive alliance number of G, and is denoted by $\gamma_{0}(G)$. The concept of global offensive alliance in graphs was further studied in, for example, [2,8,9,14,15,18,19]. Balakrishnan et al. [2] showed that the decision problem for global offensive alliance is NP-complete for general graphs. Several upper bounds for the offensive alliance and global offensive alliance numbers are given by Rodríguez-Velazquez et al. [14,15,17] and Harutyunyan [8,9].

E-mail address: n.jafarirad@gmail.com.

Harutyunyan [9] presented the following probabilistic upper bounds for the global offensive alliance and global strong offensive alliance numbers.

Theorem 1 (Harutyunyan [9]). For any graph $G=(V, E)$ of order n, and $1 / 2>\alpha>0$,

$$
\gamma_{0}(G) \leq\left(\frac{1}{2}+\alpha\right) n+\left(\frac{1}{2}-\alpha\right) \sum_{v \in V} \exp \left(-\frac{\alpha^{2}}{1+2 \alpha} \operatorname{deg}(v)\right) n
$$

Theorem 2 (Harutyunyan [9]). For any graph $G=(V, E)$ of order n, and $1 / 2>\alpha>0$,

$$
\gamma_{\hat{0}}(G) \leq\left(\frac{1}{2}+\alpha\right) n+\sum_{v \in V} \exp \left(-\frac{\alpha^{2}}{1+2 \alpha}(\operatorname{deg}(v)+1)\right) n .
$$

In this paper, we obtain new probabilistic upper bounds for the global offensive alliance number as well as the global strong offensive alliance number of a graph, and improve both Theorems 1 and 2 . Our proofs are in similar lines with the proofs of Theorems 1 and 2. The following lower bound on the k-independence number of a graph plays a fundamental role in this paper.

Theorem 3 (Favaron [4]). For every graph G and every positive integer k,

$$
\alpha_{k}(G) \geq \sum_{v \in V} \frac{k}{1+k \operatorname{deg}(v)}
$$

We also use the well-known Chernoff bound as follows:
Theorem 4 (Chernoff, [1,3]). For any $a>0$ and random variable X that has binomial distribution with probability p and mean $p n, P[X-p n<-a]<e^{\frac{-a^{2}}{2 p n}}$.

2. New bounds

We first present a new upper bound for the global offensive alliance number of a graph.
Theorem 5. Let $G=(V, E)$ be a graph of order n, maximum degree Δ and minimum degree δ. For $1 / 2>\alpha>0$,

$$
\gamma_{0}(G) \leq\left(\frac{1}{2}+\alpha\right) n+\left(\frac{1}{2}-\alpha\right) \sum_{v \in V} \exp \left(-\frac{\alpha^{2}}{1+2 \alpha} \operatorname{deg}(v)\right) n-\frac{n\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)}{1+\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right) \Delta}\left(\frac{1}{2}+\alpha\right)^{1+\Delta} .
$$

Proof. We follow the proof of Theorem 1 given in [9]. Create a subset $S \subseteq V$ by choosing each vertex $v \in V$, independently, with probability $p=1 / 2+\alpha$. The random set S is going to be part of the global offensive alliance. For every vertex $v \in V$, let X_{v} denote the number of vertices in the neighborhood of v that are in S. Let

$$
Y=\left\{v \in V-S: X_{v} \leq\left\lfloor\frac{\operatorname{deg}(v)}{2}\right\rfloor\right\}
$$

Let $S^{\prime}=\{v: N[v] \subseteq S\}$, and D be a maximum $\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)$-independent set in $G\left[S^{\prime}\right]$. For any vertex $v \in D, \operatorname{deg}_{G[D]}(v) \leq\left\lfloor\frac{\delta}{2}\right\rfloor$, and so $|N(v) \cap(S-D)|=\operatorname{deg}(v)-\operatorname{deg}_{G[D]}(v) \geq \operatorname{deg}(v)-\left\lfloor\frac{\delta}{2}\right\rfloor \geq \frac{\operatorname{deg}(v)}{2}$. Thus $(S-D) \cup Y$ is a global offensive alliance in G. We now estimate the expectation of $|(S-D) \cup Y|$. Clearly, $\mathbb{E}(|(S-D) \cup Y|) \leq \mathbb{E}(|S|)+\mathbb{E}(|Y|)-\mathbb{E}(|D|)$, and $\mathbb{E}(|S|)=n p$. Note that X_{v} is a binomial $(\operatorname{deg}(v), p)$ random variable for any vertex $v \in V$. Letting $a=\varepsilon p n$, where $\varepsilon=1-\frac{1}{2 p}$, Theorem 4 implies that

$$
\operatorname{Pr}\left(X_{v} \leq \frac{\operatorname{deg}(v)}{2}\right)=\operatorname{Pr}\left(X_{v} \leq(1-\varepsilon) p \operatorname{deg}(v)\right)<e^{\frac{-\varepsilon^{2} \operatorname{deg}(v) p}{2}}=e^{\frac{-\left(1-\frac{1}{2 p}\right)^{2} \operatorname{deg}(v) p}{2}}
$$

Then

$$
\operatorname{Pr}(v \in Y)=\operatorname{Pr}(v \notin S) \operatorname{Pr}\left(X_{v} \leq \frac{\operatorname{deg}(v)}{2}\right) \leq(1-p) e^{-\left(1-\frac{1}{2 p}\right)^{2} \frac{\operatorname{deg}(v) p}{2}}
$$

Thus, $\mathbb{E}(|Y|) \leq \sum_{v \in V}(1-p) e^{\frac{-\left(1-\frac{1}{2 p}\right)^{2} \operatorname{deg}(v) p}{2}}$. Now

$$
\begin{aligned}
\mathbb{E}(|S|+|Y|) & \leq n p+\sum_{v \in V}(1-p) e^{\frac{-\left(1-\frac{1}{2 p}\right)^{2} \operatorname{deg}(v) p}{2}} \\
& =\left(\frac{1}{2}+\alpha\right) n+\left(\frac{1}{2}-\alpha\right) \sum_{v \in V} \exp \left(-\frac{\alpha^{2}}{1+2 \alpha} \operatorname{deg}(v)\right) n
\end{aligned}
$$

We next estimate the expectation of $|D|$. By Theorem $3,|D| \geq \sum_{v \in S^{\prime}} \frac{\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)}{1+\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right) \operatorname{deg}_{G\left[S^{\prime}\right]}(v)}$. Thus,

$$
\begin{aligned}
\mathbb{E}(|D|) & \geq \mathbb{E}\left(\sum_{v \in S^{\prime}} \frac{\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)}{1+\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right) \operatorname{deg}_{G\left[S^{\prime}\right]}(v)}\right) \\
& \geq \sum_{v \in V} \frac{\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)}{1+\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right) \operatorname{deg}_{G}(v)} \operatorname{Pr}\left(v \in S^{\prime}\right) \\
& =\sum_{v \in V} \frac{\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)}{1+\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right) \operatorname{deg}_{G}(v)} p^{1+\operatorname{deg}_{G}(v)} \\
& \geq \sum_{v \in V} \frac{\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)}{1+\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right) \operatorname{deg}_{G}(v)} p^{1+\Delta} \\
& \geq \frac{n\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)}{1+\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right) \Delta}\left(\frac{1}{2}+\alpha\right)^{1+\Delta} .
\end{aligned}
$$

Thus the result follows.
We next present a new upper bound for the global strong offensive alliance number of a graph.
Theorem 6. Let $G=(V, E)$ be a graph of order n, maximum degree Δ and minimum degree δ. For $1 / 2>\alpha>0$,

$$
\gamma_{\hat{0}}(G) \leq\left(\frac{1}{2}+\alpha\right) n+\sum_{v \in V} \exp \left(-\frac{\alpha^{2}}{1+2 \alpha}(\operatorname{deg}(v)+1)\right) n-\frac{n\left(\left\lfloor\frac{\delta-1}{2}\right\rfloor+1\right)}{1+\left(\left\lfloor\frac{\delta-1}{2}\right\rfloor+1\right) \Delta}\left(\frac{1}{2}+\alpha\right)^{1+\Delta} .
$$

Proof. We follow the same proof of Theorem 5 given in [9]. Create a subset $S \subseteq V$ by choosing each vertex $v \in V$, independently, with probability $p=1 / 2+\alpha$. For every vertex $v \in V$, let X_{v} denote the number of vertices in the neighborhood of v that are in S. Let

$$
Y=\left\{v \in V-S: X_{v}<\left\lfloor\frac{\operatorname{deg}(v)+1}{2}\right\rfloor\right\} .
$$

Let $S^{\prime}=\{v: N[v] \subseteq S\}$, and D be a maximum $\left(\left\lfloor\frac{\delta-1}{2}\right\rfloor+1\right)$-independent set in $G\left[S^{\prime}\right]$. For any vertex $v \in D$, $\operatorname{deg}_{G[D]}(v) \leq\left\lfloor\frac{\delta-1}{2}\right\rfloor$, and so $|N(v) \cap(S-D)|=\operatorname{deg}(v)-\operatorname{deg}_{G[D]}(v) \geq \operatorname{deg}(v)-\left\lfloor\frac{\delta-1}{2}\right\rfloor>\frac{\operatorname{deg}(v)}{2}$. Thus $(S-D) \cup Y$ is a global strong offensive alliance in G. Clearly, $\mathbb{E}(|S|)=n p$. Note that X_{v} is a $\operatorname{binomial}(\operatorname{deg}(v), p)$ random variable for any vertex $v \in V$. Letting $a=\varepsilon p n$, where $\varepsilon=1-\frac{1}{2 p}$, Theorem 4 implies that

$$
\operatorname{Pr}\left(X_{v}<\frac{\operatorname{deg}(v)+1}{2}\right)=\operatorname{Pr}\left(X_{v}<(1-\varepsilon) p(\operatorname{deg}(v)+1)\right)<e^{-\varepsilon^{2} p(\operatorname{deg}(v)+1)} 2=e^{-\left(1-\frac{1}{2 p}\right)^{2} p \frac{(\operatorname{deg}(v)+1)}{2}} .
$$

Thus,

$$
\begin{aligned}
\mathbb{E}(|S|+|Y|) & \leq n p+\sum_{v \in V} e^{\frac{-\left(1-\frac{1}{2 p}\right)^{2} p(\operatorname{deg}(v)+1)}{2}} \\
& =\left(\frac{1}{2}+\alpha\right) n+\sum_{v \in V} \exp \left(-\frac{\alpha^{2}}{1+2 \alpha}(\operatorname{deg}(v)+1)\right) n
\end{aligned}
$$

As before, we can see that

$$
\mathbb{E}(|D|) \geq \frac{n\left(\left\lfloor\frac{\delta-1}{2}\right\rfloor+1\right)}{1+\left(\left\lfloor\frac{\delta-1}{2}\right\rfloor+1\right) \Delta}\left(\frac{1}{2}+\alpha\right)^{1+\Delta}
$$

Thus the result follows.

References

[1] N. Alon, J. Spencer, The Probabilistic Method, in: Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, Chichester, 2000.
[2] H. Balakrishnan, A. Cami, N. Deo, R.D. Dutton, On the complexity of finding optimal global alliances, J. Combin. Math. Combin. Comput. 58 (2006) 23-31.
[3] H. Chernoff, A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat. 23 (1952) 493-509.
[4] O. Favaron, k-domination and k-independence in graphs, Ars Combin. 25C (1988) 159-167.
[5] O. Favaron, G. Fricke, W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, R.C. Laskar, D.R. Skaggs, Offensive alliances in graphs, Discuss. Math. Graph Theory 24 (2) (2004) 263-275.
[6] J.F. Fink, M.S. Jacobson, n-domination in graphs, in: Graph Theorywith Applications to Algorithms and Computer Science, Wiley, New York, 1985, pp. 283-300.
[7] J.F. Fink, M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, 1985, pp. 301-311.
[8] A. Harutyunyan, Some bounds on alliances in trees, in: 9th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, CTW, 2010, pp. 83-86.
[9] A. Harutyunyan, Global offensive alliances in graphs and random graphs, Discrete Appl. Math. 164 (2014) 522-526.
[10] T.W. Haynes, S.T. Hedetniemi, M.A. Henning, Global defensive alliances in graphs, Electron. J. Combin. 10 (1) (2003) R47.
[11] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[12] S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177.
[13] P. Kristiansen, S.M. Hedetniemi, S.T. Hedetniemi, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177.
[14] J.A. Rodríguez-Velazquez, J.M. Sigarreta, Offensive alliances in cubic graphs, Internat. Math. Forum 1 (2006) 1773-1782.
[15] J.A. Rodríguez-Velazquez, J.M. Sigarreta, Global offensive alliances in graphs, Electronic Notes in Discrete Math. 25 (2006) $157-164$.
[16] J.A. Rodríguez-Velazquez, J.M. Sigarreta, On defensive alliances and line graphs, Appl. Math. Lett. 19 (12) (2006) 1345-1350.
[17] J.A. Rodríguez-Velazquez, J.M. Sigarreta, Spectral study of alliances in graphs, Discuss. Math. Graph Theory 27 (1) (2007) 143-157.
[18] J.M. Sigarreta, J.A. Rodríguez-Velazquez, On the global offensive alliance number of a graph, Discrete Appl. Math. 157 (2009) $219-226$.
[19] J.M. Sigarreta, I.G. Yero, S. Bermudo, J.A. Rodríguez-Velázquez, Partitioning a graph into offensive k-alliances, Discrete Appl. Math. 159 (4) (2011) 224-231.

