Stimulato-Inhibitory Response to Cumin Oil in Aflatoxin B1 Production of Aspergillus Species

Mohammad Hadi Fakoor 1*, Iraj Rasooli 2, Parviz Owlia 3, Mansooreh Mazaheri 4, Fataneh Shokrollahi 4, Hossein Mohammadpour 5, Sara Shehni Moosaei 5, Zeynab Jalili 5

1 Department of Microbiology, Hidaj Branch, Islamic Azad University, Hidaj, IR Iran
2 Department of Biology, Shahed University, Tehran, IR Iran
3 Molecular Microbiology Research Center, Shahed University, Tehran, IR Iran
4 Department of Food and Agriculture, Institute of Standard and Industrial Research of Iran (ISIRI), Karaj, IR Iran
5 Department of Microbiology, Masjed Soleiman Branch, Islamic Azad University, Masjed Soleiman, IR Iran

*Corresponding author: Mohammad Hadi Fakoor, Department of Microbiology, Hidaj Branch, Islamic Azad University, Hidaj, IR Iran. Tel: +98-9124607864, Fax: +98-25528660, E-mail: hadi.fakoor@gmail.com, hadi.fakoor@hidajiau.ac.ir.

Received: July 11, 2012; Revised: August 14, 2012; Accepted: September 04, 2012

1. Background

The presence and growth of fungi in food may cause spoilage and reduce its quality and quantity. Some Aspergillus species are responsible for contamination of food and feed (1, 2). Aspergillus flavus, A. parasiticus and rarely A. nomius are able to produce aflatoxins in food and feed stuff. A. flavus produces only B aflatoxins. Aflatoxin B and G are produced by A. parasiticus. However aflatoxin B1 (AFB1) is the most potent carcinogen known in mammals, the risk assessment of which is very well established (3-5). Each year many compounds are introduced to global markets as preservatives. Herbal products are of the most popular preservatives. The use of medicinal plants and spices in the food and pharmaceutical industries are increasing. Scientific evidence is that the spices do have medicinal properties which alleviate symptoms or prevent disease. Cuminum cyminum is one of the popular spices often used as a flavoring agent. China is an important exporter of this commodity besides its use in traditional medicine in the treatment of some ailments. C. cyminum is widely used in food (6). The use of natural antimicrobial compounds is important in the preservation of food and in the control of human and plant diseases of microbial origin (7). Today, many natural compounds have been identified to have antimicrobial activity (8-10), essential

Implication for health policy/practice/research/medical education: Nowadays, the use of essential oils and herbs as flavorings and preservatives is growing in the food industry. Some essential oils have antimicrobial properties. Cumin oil is one of the essential oils that have antimicrobial properties. In our studies, Cuminum cyminum L. stimulated aflatoxins production by Aspergillus species at sub MIC. Therefore, serious attention is needed toward standardization of the essential oils used in food industry to prevent food spoilage and toxin production.
oils being the most important of these compounds (11). C. cymimum essential oils possess useful antimicrobial and antioxidant properties, (12-14). Unfortunately, in the food industry, many preservatives were used for their pleasant flavors and antimicrobial properties. Toxicity and adverse side effects are important factors which need attention in the preservatives.

2. Objectives

In this study attempts were made to evaluate the response in aflatoxin B and G production of Aspergillus species to the essential oil of C. cymimum.

3. Materials and Methods

3.1. Fungal Strains and Cultures

The microorganisms used were A. flavus PICC-AF39, A. flavus PICC-AF24, and A. parasiticus NRRL-2999. All microorganisms are toxigenic. The microorganisms were maintained on Sabouraud Dextrose Agar (Merck, Germany) at 4 °C. Spore suspensions were prepared and diluted in sterile yeast extract sucrose (YES) broth to a concentration of approximately 106 spores/ml. Spore population was counted using a haemocytometer. Subsequent dilutions were made from the above suspension, which were then used in the tests. YES broth also served as aflatoxin production medium (15).

3.2. Chemicals

Aflatoxin (AF) standards were from Sigma Chemical Company, The USA. A stock standard solution of AF at 10000 µg/ml in methanol was prepared and kept wrapped in aluminum foil at -20 °C. AF working solutions were prepared by dilution in the same solvent and stored in glass-stoppered tubes at zero °C. All solvents used for the experiments (methanol, acetonitrile, deionized water) were HPLC grade. Aflatest immunoaffinity columns (IAC) were purchased from the Romer Company. HPLC grade C18 columns (C18) were from the Waters, The USA.

3.3. Determination of Mycelial Weight and Antifungal Analysis

Various concentrations (200 ppm, 400 ppm, 600 ppm and 800 ppm) of the oil were added to 100 ml of YES broth (Merck, Germany) containing 106 spores/ml. The flasks were incubated at 28±2 °C for 12 days on an incubator. Flasks containing mycelia were filtered through preweighed Whatman filter No.1 and were then washed with distilled water. The mycelia were placed on preweighed Petri plates and were allowed to dry at 50 °C for 6 h and then at 40 °C over night. The net dry weight of mycelia was then determined. Three replicates were used for each treatment. The percentage mycelia inhibition was calculated by the equation: I = 1 - T/C × 100, where I is inhibition (%), C is the colony weight of mycelium from a control flask (mg), and T is the colony weight of mycelium from a test flask (mg) (16).

3.4. Measurement of Aflatoxins

3.4.1. Aflatoxins Extraction

Erlenmeyer flasks containing 50 ml of Yeast Extract Sucrose (YES) broth and C. cymimum oil from the Alborz Mountain at concentrations lower than the MIC (200 ppm, 400 ppm, 600 ppm and 800 ppm) were inoculated with fungal spores to give 106 spores/ml. The flasks were then incubated at 28±2 °C for 12 days. Aflatoxin B1, B2, G1 and G2 were determined at the end of the incubation period. Aflatoxin extraction was performed routinely with solvent extraction as described by Razaghi et al. (17) and Allameh et al. (18).

3.4.2. Extraction and Clean Up

Samples were analyzed either using a high performance liquid chromatography (HPLC) method (19) with some minor modifications. In HPLC analysis, the test portion was extracted with 200 ml of methanol/water (80 ml/20 ml). After filtration, the extract was diluted with water and filtered through glass microfiber filter. For clean-up of samples, Aflatest IACs were used. 10 ml phosphate buffer saline (PBS) was passed through the IAC. 75 ml of the filtrate was passed through the IAC at flow rate of ca. 1 drop/s. The column was washed with 15 ml water and dried by applying little vacuum. Finally, AFs were evaluated with methanol by the following procedure. First, 0.5 ml methanol was applied on the column which passed through by gravity. After 1 min, the second portion of one ml methanol was applied and collected. The collection was diluted with water and analyzed by HPLC.

3.4.3. AF Standards

After preparation of standard solutions of individual AF, the concentration of each one was determined using UV spectrophotometer. These standards were used to prepare mixed working standards for HPLC.

3.4.4. Analysis of AFs Using HPLC

AFs were determined by reverse-phase HPLC and fluorescence detector with postcolumn derivatization (PCD) involving bromination (20). HPLC system (pump 1525, fluorescence detector 2475, analytical column, Nova-pack C18 250 ×4.6 mm: 4 µm) PCD (postcolumn derivatization) was achieved with a Kobra cell and addition of bromide to the mobile phase. After dilution of AF evaluated with water, 100 µl was injected into HPLC. Mobile phase was water: methanol: acetonitrile (600:300:200, v/v/v) and 350 micro liter from nitric acid 4 mole/lit and 12 mg of potassium bromide with a flow rate of 1 ml/min. The fluores-
cence detector was operated at an excitation wavelength of 365 nm and emission wavelength of 435 nm. Each working day, a five-point calibration curve was built for each individual AF including aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2) checked for the linearity and used for quantification of AFs in samples.

3.4.5. Quality Assurance

For evaluation of the reliability of the results of AF analysis, in addition to using validated methods, internal and external quality control experiments were performed. Regarding internal quality control, the accuracy and precision of the methods were verified. In this regard, recoveries of AFB1 and AFB2 were recorded by analyzing a blank sample spiked at 5 ng/g for each AFB1, 1 ng/g for each AFB2, 1 ng/g for each AFG1, and 1 ng/g for each AFG2. According to the recovery values, AF levels were corrected for recoveries.

4. Results

The effect of C. cyminum L. oil from Alborz Mountain on mycelial mass and aflatoxin production is shown in Tables 1 - 4.

<table>
<thead>
<tr>
<th>Table 1. Effect of the C. cyminum L. Essential Oil From the Alborz Mountain on Growth of A. flavus PICC-AF24 and Its Aflatoxin Productivity Against 106 CFU/mL of Fungal Suspensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oilconcentration, ppm</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Effect of the C. cyminum L. Essential Oil From the Alborz Mountain on Growth of A. flavus PICC-AF39 and Its Aflatoxin Productivity Against 106 CFU/mL of Fungal Suspensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oilconcentration, ppm</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Effect of the C. cyminum L. Essential Oil From the Alborz Mountain on Growth of A. Parasiticus NRRL-2999 and Its Aflatoxin B Productivity Against 106 CFU/mL of Fungal Suspensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oilconcentration, ppm</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>800</td>
</tr>
</tbody>
</table>

The scores related to AFB1, AFB2, AFG1 and AFG2 were used for a linear regression in the standard. HPLC analysis of spiked samples gave a good correlation with spiked values (R2 > 0.992). The scores regression coefficient (R2) for AFB1, AFB2, AFG1 and AFG2 were 0.9965/0.9930, 0.9963/0.9926, 0.9981/0.9962 and 0.9996/0.9992 respectively.

The concentration of essential oil to inhibit production of aflatoxin (B1, B2 and total) for A. flavus PICC-AF39, A. flavus PICC-AF24, and (B1, B2, G1, G2 and total) for A. parasiticus NRRL-2999 was determined to be in the range of sub-MIC (200 ppm, 400 ppm, 600 ppm and 800 ppm). Mycelia weight declined with increasing concentration of essential oil showed in Tables 1 - 3. We can clearly show an increase in aflatoxin production by all three species of toxing-producing Aspergillus (Tables 1, 4). Whereas dry weight of mycelium(ng) of A. flavus PICC-AF39, A. flavus PICC-AF24 and A. parasiticus NRRL-2999 was declined (Tables 1, 3).

Dry weight of mycelium (mg) of A. flavus PICC-AF24 in 800 ppm concentration declined 28.06% compared to control without oil (Table 1). In this Table, at 400 ppm concentration of C. cymun L. essential oil from Alborz Mountain, the concentration of aflatoxin B1, B2 and total aflatoxin were 4.55, 2.66 and 3.47 fold respectively. The same happened in A. flavus PICC-AF39 at 800 ppm and 400ppm for dry weight of mycelium and aflatoxin production (B1 and B2) respectively. At 800 ppm oil concentration the mycelium weight reduced to 56.1%. At 400 ppm, aflatoxin B1, B2 and total production were increased 5.76, 2.66 and 6.54 fold respectively (Table 2).

Tables 3 and 4 show oil concentration of the Alborz Mountain C. cyanum L. (ppm), dry weight of mycelium, aflatoxins (B1, B2, G1, G2 and total) (ng/mL) and Aflatoxins production (B1, B2, G1, G2 and total) (ng) per (mg) mycelia weight for A. parasiticus NRRL-2999. The mycelial dry weight compared to control without oil calculated at 800 ppm was lost (Table 3). Toxin production was increased by A. parasiticus NRRL-2999 at 800 ppm of the oil. Aflatoxin production (B1, B2, G1 and total) (ng) per (mg) mycelia weight were increased to 8, 19, 10.86, and 9 fold respectively.

A. parasiticus NRRL-2999 does not produce G2 toxin production under normal conditions. When oil was added to the flask containing fungal spores of A. parasiticus, AFG1 was produced and increased to about 10-fold (Table 4). The extent of aflatoxin production was dependent on the concentration of essential oil used (Tables 2, 3). All toxin-producing fungi in this study produced higher amount of aflatoxin at low concentrations of the oil. Aflatoxin productivity was declined at high concentration of the oil (Table 1, 4).

5. Discussion

Antifungal activities of C. cyanum L. essential oil from the Alborz Mountain against A. flavus PICC-AF39, A. flavus PICC-AF24 and A. parasiticus NRRL-2999 was determined (14). Minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations (ppm) of the C. cyanum L. essential oil from the Alborz mountain of Iran against 106 spores/ml of A. flavus PICC-AF24, PICC-AF39 and A. parasiticus NRRL-2999 were 1000/3000, 1000/2500 and 750/3000 ppm respectively (14). Our results of antifungal properties are in agreement with those reported by Mohammadmour et al. (14). Mycelia weight declined with increasing concentration of C. cyanum L. from the Alborz Mountain (Tables 1 - 3).

Antimicrobial activity of Cumin oil on some bacteria and fungi has been reported (21, 22). Although expression of antifungal activity is often very clear, the mechanism of action is ambiguously understood. Therefore, further research is to be performed to determine the antimicrobial activity of C. cyanum L. The oil exhibited significant inhibition of fungal growth and aflatoxin B1 production. Turmeric leaf oil exhibited 95.3% and 100% inhibition of aflatoxin production respectively at 1.0% and 1.5% concentrations in YES broth (23). Bhanu Prakash et al. (24) showed antifungal properties of Piper betle L. essential oil (EO) in fungal contamination on some dry fruits. MIC of P. betle L. was found to be 0.7 μl/ml against A. flavus. The EO reduced AFB1 production at 0.6 μl/ml. They reported efficacy of P. betle EO as aflatoxin suppressor.

A finding showed that aflatoxin production can be controlled by costoring whole sweet basil leaves (Ocimum basilicum) with aflatoxin infected foods (25). There are other studies that have confirmed above (15, 26-28).

Table 4. Effect of the C. cymun L. Essential Oil from the Alborz Mountain on Growth of A. Parasiticus NRRL-2999 and its Aflatoxin G Productivity Against 106 CFU/mL of Fungal Suspensions

<table>
<thead>
<tr>
<th>Oil Concentration, ppm</th>
<th>Dry Weight of Mycelium, mg</th>
<th>Aflatoxin G1 (ng/mL)</th>
<th>Aflatoxin G2 (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Production Per Mycelial Weight</td>
<td>Production Per Mycelial Weight</td>
</tr>
<tr>
<td>0</td>
<td>630</td>
<td>14.8</td>
<td>0.0223492</td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>82.00</td>
<td>0.0831461</td>
</tr>
<tr>
<td>400</td>
<td>410</td>
<td>34.09</td>
<td>0.0831461</td>
</tr>
<tr>
<td>600</td>
<td>400</td>
<td>69.25</td>
<td>0.0831461</td>
</tr>
<tr>
<td>800</td>
<td>350</td>
<td>84.95</td>
<td>0.2427143</td>
</tr>
</tbody>
</table>

On the other hand, the compounds are also stimulates for aflatoxin production by toxin-producing fungi. Our research showed that Cumin essential oil from Alborz Mountain had stimulating effect on toxin productivity of A. flavus PICC-AF24, A. flavus PICC-AF39 and A. parasiticus NRRL-2999. This strange phenomenon is being reported for the first time. Since most essential oils have been found to be cytotoxic rather than mutagenic, it is likely that most of them are noncarcinogenic. Some metabolites are genetically induced by some essential oils. Lower concentrations of the cytotoxic effect can induce the production of secondary metabolites in Saccharomyces cerevisiae (29-31).

Aflatoxins are also secondary metabolites. However, some essential oils or rather some of their constituents may be considered as secondary carcinogens after metabolic activation. For example, essential oils like those from Salvia scarea and Melaleuca quinquenervia provoke estrogen secretion which can induce estrogen-dependent cancers (32, 33). In conclusions serious attention is needed toward standardization of the essential oils used in food industry to prevent spoilage and toxin production.

Acknowledgements

This study was fully supported by the Vice chancellor for Research of Hidaj, Azad University.

Authors’ Contribution

Study concept, design and the protocol: Fakoor, Rasooli and Owlia; Reverse-phase HPLC and analysis of HPLC for toxin assay: Fakoor, Rasooli, Owlia, Mazaheri and Shokrollahi; Manual techniques for microbiology: Fakoor, Shehni, Jalili and Mohammadpour; Wrote the manuscript: Fakoor and is guarantor

Financial Disclosure

None declared.

Funding/Support

This study was financially supported by Azad University (Hida) branch.

References

25. Atanda OO, Akpan I, Oluwafemi F. The potential of some spice es-


