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a b s t r a c t

The location of multiple cross-docking centers (CDCs) and vehicle routing scheduling are

two crucial choices to be made in strategic/tactical and operational decision levels for

logistics companies. The choices lead to more realistic problem under uncertainty by cov-

ering the decision levels in cross-docking distribution networks. This paper introduces two

novel deterministic mixed-integer linear programming (MILP) models that are integrated

for the location of CDCs and the scheduling of vehicle routing problem with multiple CDCs.

Moreover, this paper proposes a hybrid fuzzy possibilistic–stochastic programming solu-

tion approach in attempting to incorporate two kinds of uncertainties into mathematical

programming models. The proposed solving approach can explicitly tackle uncertainties

and complexities by transforming the mathematical model with uncertain information

into a deterministic model. m0 imprecise constraints are converted into 2Rm0 precise inclu-

sive constraints that agree with Ra-cut levels, along with the concept of feasibility degree

in the objective functions based on expected interval and expected value of fuzzy numbers.

Finally, several test problems are generated to appraise the applicability and suitability of

the proposed new two-phase MILP model that is solved by the developed hybrid solution

approach involving a variety of uncertainties and complexities.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In an increasingly competitive market, logistics companies are recently tending to well-performed distribution networks

in supply chain management. Cross-docking distribution networks with minimal storage and retrieval functions are intro-

duced to have vital benefits, such as reducing handling costs, operating costs, transportation costs, the storage of inventory,

space requirement and delivery lead time as well as no or less inventory. In this distribution network, products arriving at

cross-docking center (CDC) as key components from manufacturers or suppliers are carried to trucks serving the customers

or retailers, and then are delivered to the retailers without being stored as inventory at the CDC by spending very little time.

The functions at the CDC usually perform less than 48 h, sometimes less than 12 h [1].

Regarding the recent development of the cross-docking distribution networks, Chen et al. [2] consider a cross-docking

distribution network with delivery and pickup time windows, warehouse capacities and inventory-handling costs. Then,
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local search approaches are extended and applied based on simulated annealing (SA) and tabu search (TS) algorithms. Lee

et al. [3] address the scheduling problem of inbound and outbound trucks with the cross-docking. The mathematical model

to maximize the number of product and the genetic algorithms are presented to solve the problem. Yeung and Lee [4] take

the scheduling problem of delivery into consideration, where products are transported within time windows. The objective

is to minimize the inventory, transportation and penalty cost. Then, the genetic algorithm is applied to solve the problem.

Cóccola et al. [5] concentrate on the integration of the production and distribution management with cross-docking in the

supply chain. To formulate the problem, the integrated mixed-integer linear programming (MILP)-based framework is pre-

sented for multi-site systems in the supply chain. Konur and Golias [6] investigate the truck scheduling problem at inbound

doors of a cross-docking facility and regard the uncertainty in truck arrival times for operations. Then, the optimization ap-

proach is presented for the stable scheduling problem, and it is solved by the genetic algorithm. Liao et al. [7] focus on the

simultaneous dock assignment and sequencing of inbound trucks for a multi-door cross-docking operation, and the objective

is to minimize total weighted tardiness under a fixed outbound truck departure schedule. Then, six different meta-heuristic

algorithms are presented to solve the problem, including SA, TS, ant colony optimization, differential evolution and two hy-

brid differential-evolution algorithms. Joo and Kim [8] study the truck scheduling problem for three types of trucks in a mul-

ti-door cross-docking facility. A mathematical model is proposed to determine the door assignments and the docking

sequences of trucks, and then genetic and self-evolution algorithms are presented to solve the model.

In cross-docking distribution networks, finding the best locations for CDCs and the best vehicle routing scheduling with

minimizing inventory and minimizing transportation cost has recently attracted the attention of some researchers. The inte-

gration of CDCs locating and vehicle routing scheduling can be introduced to solve two important issues related to cross-

docking distribution networks concurrently. It assists logistics companies to take interactions between the strategic/tactical

and operational decision levels into consideration with effects on long-term and short-term planning. The models are par-

ticularly necessary for the distribution networks where location costs can be compared with vehicle routing costs, for in-

stance, distribution in perishable and agricultural products.

One of the first decisions that should be considered during the long-term planning is the location of one or more CDCs as a

main component of the design of cross-docking distribution networks. Sung and Song [9] are the first researchers that focus

on the CDCs location problem. In the study, products should be transferred from suppliers to retailers with a cross-docking

distribution center. The cross-docking distribution center can be selected among possible locations regarding fixed costs. An

integer programming model is proposed, similar to the model introduced by Donaldson et al. [10] and Musa et al. [11]. In

[12], the authors develop their previous work. They present some improvements to the TS algorithm as the solving approach,

and consider a branch-and-price algorithm to determine exact solutions. Gümüs and Bookbinder [13] take account of a sim-

ilar cross-docking network design problem. Multiple product types are studied by allowing direct shipments. Jayaraman and

Ross [14] present a different approach for the CDC location problem. A multi-echelon problem is considered where multiple

products should be moved from amanufacturing plant to one or more distribution centers. They provide an integer program-

ming model that attempts to minimize the fixed costs of distribution centers and CDCs and the different transportation costs.

Ross and Jayaraman [15] also develop two hybrid meta-heuristics to deal with the location problem. Both hybrid meta-heu-

ristics are on the basis of the SA algorithm; however, they utilize an extra mechanism to avoid locally optimal solutions. The

first meta-heuristic applies a tabu list, and the second meta-heuristic regards a re-scaling of the system temperature. Bachl-

aus et al. [16] study a multi-echelon distribution network. The network contains suppliers, plants, distribution centers, CDCs

and customers. A multi-objective optimization model is developed that aims to minimize the total costs and to maximize the

plant and volume flexibility.

One of the important decisions in the distribution networks that should be considered during the short-term planning is

the vehicle routing scheduling with the cross-docking. The delivery from one or more CDCs to customers or retailers can be

managed by vehicle routing problem, and consolidating the items through CDCs can be done in the distribution networks.

The pickup and delivery processes can be regarded as a vehicle routing problem. Several studies take account of the cross-

docking and vehicle routing concurrently in recent years. Lee et al. [17] are the first researchers that study the vehicle routing

scheduling problemwith the cross-docking. They try to obtain an optimal routing schedule for pickup and delivery processes

during the planning horizon. The model minimizes the transportation costs and fixed costs of the vehicles. The solving ap-

proach based on a TS algorithm is developed to provide near optimal solutions. Liao et al. [18] introduce another TS algo-

rithm to solve the vehicle routing scheduling problem presented in [17]. Wen et al. [19] incorporate the vehicle routing

problem in cross-docking systems. In the problem, orders from suppliers should be picked up by a homogeneous fleet of

available vehicles.

The review of the literature indicates that there are a few papers studied the cross-docking location and vehicle routing

scheduling problems. There are many opportunities to improve and develop the mathematical models reported in the liter-

ature for both location and vehicle routing scheduling problems. In the cross-docking location problem, for instance, the

restrictions regarding time window are not taken into consideration in the pickup and delivery processes. Furthermore,

inventories costs and restrictions regarding the capacity of multiple products (multi-commodities) at CDCs are not consid-

ered in previous works. For the vehicle routing scheduling problem in previous works, the routing schedule is formulated

only with one CDC. Incorporating the vehicle routing scheduling with multiple CDCs along with multiple products can be

considered to have a more realistic modeling approach in the cross-docking distribution networks.

Two major drawbacks in the previous studies, firstly, the cross-docking location problem and vehicle routing scheduling

problem in the distribution networks is considered separately; however, the integration of two problems has a strong
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influence on the cross-docking distribution networks. In fact, these decisions are often inter-dependent in practice. The inte-

gration makes the problem more realistic by addressing the strategic/tactical and operational decisions simultaneously, and

then it leads to the results be near to real-life situations. Secondly, critical parameters, such as products demands, supplies

quantities in the pickup and delivery processes, volume capacity of vehicles, time for each vehicle to move between nodes,

and transportation and operating costs, are deterministic. Values of these parameters may change in the distribution envi-

ronment not only in long-term planning but also in short-term planning. Hence, the cross-docking distribution networks

should be designed in a way that it can cope with the uncertainties in the important parameters.

To address the above-mentioned gaps in the literature, this paper designs a novel two-phase mathematical programming

model, in which two MILP models are formulated and then they are integrated for the CDCs location and vehicle routing

scheduling problems in the distribution networks. Also, to tackle the uncertainties in critical parameters, this paper intro-

duces a new solving approach in fuzzy possibilistic–stochastic programming (FPSP) that has merits and advantages of the

previously well-known developed approaches. By the proposed FPSP solution approach, some uncertainties in parameters

can be quantified as probability density functions (PDFs) and the others can be expressed as fuzzy membership functions.

In the proposed solution, both fuzzy possibilistic programming and stochastic programming are taken into account and

are hybridized within an effective framework to handle the various uncertainties of input data.

In sum, this paper introduces a new two-phase fuzzy possibilistic–stochastic MILP model for the cross-docking location

and routing problem that is able to: (1) incorporate both multiple cross-docks location and vehicle routing scheduling with

multiple CDCs simultaneously by a new two-phase MILP model, resulted in an effective relation between two decision levels

through the long-term and short-term planning; (2) present a new location model-based optimization in which operating

costs at CDCs, multiple time periods to increase the accuracy of the model and capacity restriction on total costs for opening

CDCs are considered for the first time in the literature. Also, operational, transportation and inventory costs are taken into

account in different time periods; (3) present a new routing scheduling model-based optimization, in which multiple CDCs,

multiple products, volume capacity restriction of each vehicle (route) in pickup and delivery processes, working time restric-

tion of each vehicle in pickup and delivery processes, operational cost for each vehicle, due-date to deliver products to retail-

ers (customers) and penalty costs for both early and tardy deliveries to retailers are taken into consideration for the first time

in the literature; (4) consider various uncertainties in input data in the cross-docking location and routing problems for the

first time in the literature, related to situations where randomness and fuzziness occur in a mathematical modeling frame-

work; and (5) propose an efficient hybrid solution approach to address uncertainties and complexities in parameters that

enhances the robustness of the optimization process by presenting the parameters as PDFs and/or fuzzy membership

functions.

The rest of the paper is organized as follows. In the next section, the concerned problem is defined, and then the proposed

two-phase MILP model is presented for the cross-docking distribution networks in Section 2. The proposed FPSP solution

approach is developed in Section 3. Numerical analysis is provided in Section 4. Finally, Section 5 ended up with some con-

cluding remarks.

2. Modeling cross-docking centers location and vehicle routing scheduling problem

This section outlines the cross-docking planning problem. A location and routing problem is considered in cross-docking

distribution networks in this paper that consists of suppliers (pickup nodes), CDCs and retailers (delivery nodes). The struc-

ture of the multi-echelon distribution network is depicted in Fig. 1.

2.1. Problem description

The first phase of the proposed model focuses on making a decision in a strategic viewpoint where CDCs need to be lo-

cated and performed in different time periods. It is a vital decision for logistics companies in long-term planning due to sali-

ent influences on the distribution networks. The objective in the first phase is to find three types of costs. First, fixed and

operating costs at CDCs. Second, transportation costs to transfer units of multiple products from suppliers (pickup nodes)

to CDCs and from CDCs to the retailers (delivery nodes). Third, holding costs are associated with inventories at CDCs.

Assumptions of the first phase are provided below. Pickup and delivery are fulfilled within their specified time windows.

All demands will be covered by the sufficient inventory of each product. Further, there are restrictions on the capacity of

CDCs in each period.

The second phase of the proposed model focuses on making a decision in an operational viewpoint where the optimal

route and the arrival time of each vehicle with multiple CDCs need to be obtained. It is an important decision for the logistics

companies in short-term planning due to salient influences on the distribution networks. The objective in the second phase

is to find minimum transportation costs related to transferring multiple products in the pickup and delivery processes sep-

arately, operational costs of vehicles and penalty costs for earliness and tardiness deliveries to retailers. Limitations of the

second phase are provided below. Each supplier or retailer can only be picked up or delivered once. The total quantity of

pickup must equal the quantity to be delivered. The load on the pickup route and on the delivery route for each vehicle

cannot exceed the capacity of the vehicle. Also, maximum working time of each vehicle is regarded in pickup and delivery

processes. In this phase, it is assumed that vehicles are located in the multiple CDCs, and pickup and split deliveries are not
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allowed. The vehicles for the delivery move to the retailers and then return to the same CDC after completing their tours.

Moreover, since the cross-docking is basically a just-in-time logistics system for the distribution planning, this paper takes

earliness/tardiness penalty into account for early/tardy outbound trucks violating the retailers’ due-date in the delivery pro-

cess. This issue mandates the planning, routing and scheduling in the CDCs to be considered due-dates of various retailers in

the delivery process. Just-in-time distribution through the cross-docking is regarded as a modern logistical service allowing

logistics managers to operate with low stocks while maintaining optimal service standards, and it brings about numerous

advantages for all partners of the supply chain. It is worth to mention that to make a best decision and effective connection

between two phases in long-term and short-term planning, critical parameters of the second phase (vehicle routing sched-

uling) are taken by the values obtained in the first phase (location of multiple CDCs). The parameters are demands, supply

quantities, and number of pickup nodes, CDCs and delivery nodes.

2.2. Proposed FPSP model for cross-docking distribution networks

In this sub-section, notations are presented for the formulation of the proposed fuzzy possibilistic–stochastic MILP model

in the location problem of multiple CDCs for the first phase and vehicle routing scheduling problem with multiple CDCs for

the second phase, respectively.

Sets and parameters
P: Set of pickup nodes (i = 1,2, . . . ,n)

D: Set of delivery nodes (i
0
= 1,2, . . . ,m)

K: Set of CDC (k = 1,2, . . . ,c)

p: Set of products (p = 1,2, . . . ,q)

t: Set of time (t = tmin, . . . , tmax)

t0: Set of time periods (t0 = 1,2, . . . ,T)

V: Set of vehicle in pickup process (v = 1,2, . . . ,V)

V 0: Set of vehicle in delivery process (v 0 = 1,2, . . . ,V 0)

Q i;p;t0 : is 1 if product type p is picked up in node i in period t0, and 0 otherwise

Q i0 ;p;t0 : is 1 if product type p is delivered by node i
0
in period t0, and 0 otherwise

Ami;p;t0 : Amount of product type p in pickup node i in period t0

CDC

CDC

CDC CDC

CDC

Delivery Node

Pickup Node

Pickup

Cross-docking 

Center

Delivery

Fig. 1. A proposed network for multiple CDCs in the distribution system.
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Ami0 ;p;t0 : Amount of product type p in delivery node i
0 in period t0

Deisti;k: Distance of pickup node i from CDC k

Deisti0 ;k: Distance of delivery node i
0 from CDC k

eC i;k: Transportation cost per distance unit from pickup node i from CDC k
eC i0 ;k: Transportation cost per distance unit from of delivery node i

0 from CDC k

TSi: Lower bound of time window for pickup node i

TSi0 : Lower bound of time window for delivery node i
0

TEi: Upper bound of time window for pickup node i

TEi0 : Upper bound of time window for delivery node i
0

capk;t0 : Capacity of CDC k in period t0

HeCk;p;t0 : Holding cost per unit product type p in a unit of time at CDC k in period t0

Tmin, Tmax: Minimum and maximum of time horizon
eF k: Fixed opening cost to open CDC k

OeCkt0 : Operating cost at CDC k in period t0

ecv : Operational cost of the vehicle v
ecv 0 : Operational cost of the vehicle v 0

TeC S: Maximum total cost which could pay for opening CDCs

pip: Loaded amount of product type p in node i in pickup process

di0p: Unloaded amount of product type p in node i
0
in delivery process

ec ij: Transportation cost from node i to node j in pickup process
ec i0 j0 : Transportation cost from node i

0
to node j

0
in delivery process

CeAv : Volume capacity of vehicle (route) v in pickup process

CeAv 0 : Volume capacity of vehicle (route) v 0 in delivery process
ef p: Unit volume of product type p
etvij : Time for the vehicle v to move from node i to node j in pickup process
etv 0

i0 j0
: Time for the vehicle v 0 to move from node i

0
to node j

0
in delivery process

eT S
v
: Maximum working time of vehicle v in pickup process

eT S
v
0 : Maximum working time of vehicle v 0 in delivery process

ai0 : Penalty unit of early delivery from retailer in node i
0
in delivery process

bi0 : Penalty unit of tardy delivery from retailer in node i
0
in delivery process

di0 : Due-date demanded by retailer in node i
0
in delivery process.

Decision variables

Xi
p;k;t;t0 : 1 if product type p in pickup i goes to CDC k in period t0 at time t, and 0 otherwise

Xi0

p;k;t;t0 : 1 if product type p in delivery i
0
is bound for CDC k in period t0 at time t, and 0 otherwise

Sp;k;t;t0 : Amount of product type p at CDC k in period t0 at time t

xk: 1 if CDC k is open, and 0 otherwise

xijv : 1 if point i immediately precedes point j by vehicle v in pickup process, and 0 otherwise ði; j 2 P [ KÞ
xi0 j0v 0 : 1 if point i

0
immediately precedes point j

0
by vehicle v 0 in delivery process, and 0 otherwise ði0; j0 2 D [ KÞ

Zkj: 1 if pickup node j is allocated to CDC k, and 0 otherwise

Zkj0 : 1 if delivery node j
0
is allocated to CDC k, and 0 otherwise

uiv : Auxiliary variable for sub-tour elimination constraints in route v in pickup process

ui0v 0 : Auxiliary variable for sub-tour elimination constraints in route v 0 in delivery process

wiv : Volume of products to be collected by the vehicle of type v upon arriving at i in pickup process

wi0v 0 : Volume of products remaining to be delivered by the vehicle of type v 0 upon arriving at i
0
in delivery process

atvi : Arrival time of vehicle v at node i in pickup process

atv
0

i0 : Arrival time of vehicle v 0 at node i
0
in delivery process

Ei0 : Total earliness delivery penalty demanded by retailer in node i
0
in delivery process

Li0 : Total tardiness delivery penalty demanded by retailer in node i
0
in delivery process.

2.2.1. Multiple CDCs location model (phase one)

The CDCs location problem for the first phase of the proposed fuzzy possibilistic–stochastic model can be formulated in

terms of the above notations from a strategic viewpoint as follows:

Minimize Z1 ¼
XT

t0¼1

Xc

k¼1

ðeF k þ OeCkt0 Þxk þ
XT

t0¼1

Xc

k¼1

Xq

p¼1

XTmax

t¼Tmin

HeCk;p;t0Sp;k;t;t0 þ
XT

t0¼1

Xq

p¼1

Xm

i0¼1

Xc

k¼1

XTmax

t¼Tmin

Xi0

p;k;t;t0D
eisti0 ;keC i0 ;k

þ
XT

t0¼1

Xq

p¼1

Xn

i¼1

Xc

k¼1

XTmax

t¼Tmin

Xi
p;k;t;t0D

eisti;keC i;k: ð1Þ
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Subject to:

Xc

k¼1

XTsd�1

t¼Tmin

X i0

p;k;t;t0 ¼ 0; 8i0; p; t0; ð2Þ

Xc

k¼1

XTEd

t¼TSd

Xi0

p;k;t;t0 6 1; 8i0; p; t0; ð3Þ

Xc

k¼1

XTmax

t¼TEdþ1

X i0

p;k;t;t0 ¼ 0; 8i0;p; t0; ð4Þ

Xc

k¼1

XTsp�1

t¼Tmin

X i
p;k;t;t0 ¼ 0; 8i;p; t0; ð5Þ

Xc

k¼1

XTEp

t¼TSp

Xi
p;k;t;t0 ¼ 1; 8i;p; t0 and Q i;p;t0 ¼ 1; ð6Þ

Xc

k¼1

XTmax

t¼TEpþ1

X i
p;k;t;t0 ¼ 0; 8i;p; t0; ð7Þ

Xq

p¼1

Sp;k;t;t0 6 capk;t0 ; 8k; t0 and Tmin 6 t 6 Tmax; ð8Þ

sp;k;t0 ;Tmin�1
¼ 0; 8p; k; t0; ð9Þ

sp;k;t;t0 ¼ sp;k;t�1;t0 �
Xm

i0¼1

Xi0

p;k;t;t0Q i0 ;p;t0Ami0 ;p;t0 þ
Xn

i¼1

X i
p;k;t;t0Q i;p;t0Ami;p;t0 8p; k; t0 and Tmin 6 t 6 Tmax; ð10Þ

XC

k¼1

Xn

i¼1

Xi
p;k;t;t0Q i;p;t0Ami;p;t0 �

XC

k¼1

Xm

i0¼1

X i0

p;k;t;t0Q i0 ;p;t0Ami0 ;p;t0 P 0; 8p; t0 and Tmin 6 t 6 Tmax; ð11Þ

XC

k¼1

eF kxk 6 TeC S
; ð12Þ

Xi
p;k;t;t0 6 xk; 8i;p; k; t0 and Tmin 6 t 6 Tmax; ð13Þ

Xi0

p;k;t;t0 6 xk; 8i0;p; k; t0 and Tmin 6 t 6 Tmax; ð14Þ

Sp;k;t;t0 P 0; 8p; k; t0 and Tmin 6 t 6 Tmax; ð15Þ

Xi
p;k;t;t0 ; Xi0

p;k;t;t0 ; xk 2 f0;1g: ð16Þ

Eq. (1) indicates the total costs to be minimized in the objective function including costs of holding inventories at the CDC

and costs of transportation (i.e., costs of transportation from suppliers to CDCs and then from CDCs to customers), fixed costs

and operating costs at the CDC. Constraints (2)-(4) guarantee that each delivery, if necessary, is fulfilled within its specified

time window and beyond that range it takes the value of zero in each time period. According to Eqs. (5)–(7), the time win-

dow restrictions are taken into consideration for pickups. Constraint (8) considers the potential capacity of CDCs. Eq. (9) cor-

responds to a zero initial inventory for each product at each CDC. Eq. (10) controls any changes in the inventory level of each

CDC at each time. Constraint (11) guarantees the sufficient inventory of each product to cover all demands in each time per-

iod. Constraint (12) considers capacity restriction on total costs that can be paid for opening CDCs. Constraints (13) and (14)

establish that moving product p from suppliers to CDC and from CDC to retailers in the pickup and delivery processes can be

performed only when the corresponding CDC is open in each time period. Finally, constraints (15) and (16) guarantee the

non-negativity and binary of the corresponding decision variables.
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2.2.2. Vehicle routing scheduling model with multiple CDCs (phase two)

The vehicle routing scheduling problem with multiple CDCs for the second phase of the proposed model can be formu-

lated in terms of the above notations from an operational viewpoint as follows:

Minimize Z2 ¼
X

i2P[K

X

j2P[K

X

v2V
ec ijxijv þ

X

i02D[K

X

j02D[K

X

v
02V 0

ec i0 j0xi0 j0v 0 þ
X

i02D

X

j02D

X

v
02V 0

X

p

ðEi0 þ Li0 Þxi0j0v 0 þ
X

i2K

X

j2P

X

v2V
ecvxijv

þ
X

i02K

X

j02D

X

v
02V 0

ecv 0xi0 j0v 0 : ð17Þ

Subject to:X

i2P[K

X

v2V
xijv ¼ 1; 8j 2 P; ð18Þ

X

i02D[K

X

v
02V 0

xi0j0v 0 ¼ 1; 8j0 2 D; ð19Þ

uiv � ujv þ nxijv 6 n� 1; 8i; j 2 P and 8v 2 V ; ð20Þ

ui0v 0 � uj0v 0 þmxi0j0v 0 6 m� 1; 8i0; j0 2 D and 8v 0 2 V 0
; ð21Þ

X

i2P[K
xijv ¼

X

j2P[K
xjiv ; 8i 2 P [ K and 8v 2 V ; ð22Þ

X

i02D[K
xi0j0v 0 ¼

X

j02D[K
xi0j0v 0 ; 8i0 2 D [ K and 8v 0 2 V 0

; ð23Þ

X

i2K

X

j2P
xijv 6 1; 8v 2 V ; ð24Þ

X

i02K

X

j02D
xi0 j0v 0 6 1; 8v 0 2 V 0

; ð25Þ

�Zkj þ
X

l2P[K
ðxilv þ xljvÞ 6 1; 8i 2 K; 8j 2 P and 8v 2 V ; ð26Þ

�Zkj0 þ
X

l02D[K
ðxi0 l0v 0 þ xl0 j0v 0 Þ 6 1; 8i0 2 K; 8j0 2 D and 8v 0 2 V 0

; ð27Þ

wiv þ
Xq

p¼1

ef ppip �wjv 6 ð1� xijvÞCeAv ; 8i 2 P [ K; 8j 2 P and 8v 2 V ; ð28Þ

wi0v 0 �
Xq

p¼1

ef pdi0p �wj0v 0 P ð1� xi0 j0v 0 ÞCeAv 0 ; 8i0 2 D [ K; 8j0 2 D and 8v 0 2 V 0
; ð29Þ

atvi P etvij ; 8v 2 V ; 8i 2 K and 8j 2 P; ð30Þ

atv
0

i0 P etv 0

i0 j0 ; 8v 0 2 V 0
; 8i0 2 K and 8j0 2 D; ð31Þ

atvi þ etvij � atvj 6 ð1� xijvÞeT s
v
; 8i; j 2 P and 8v 2 V ; ð32Þ

atv
0

i0 þ etv 0

i0 j0 � atv
0

j0 6 ð1� xi0j0v 0 ÞeT s
v
0 ; 8i0; j0 2 D and 8v 0 2 V 0

; ð33Þ

Ei0 ¼ max 0;di0 � atv
0

i0
� �

ai0 ; 8i0 2 D and 8v 0 2 V 0
; ð34Þ

Li0 ¼ max 0; atv
0

i0 � di0
� �

bi0 ; 8i0 2 D and 8v 0 2 V 0
; ð35Þ

xijv ; xi0j0v 0 ; Zkj; Zkj0 2 f0;1g; ð36Þ

uiv ;ui0v 0 ;wiv ;wi0v 0 ; atvi ; at
v
0

i0 P 0: ð37Þ
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Eq. (17) indicates the total costs to be minimized in the objective function including transportation costs related to mov-

ing multiple products in the pickup and delivery processes, penalty costs for total earliness and tardiness delivery to retailers

in the delivery process, and operational costs of vehicles in the processes. Eqs. (18) and (19) consider that one vehicle has to

arrive at and leave one node in the pickup process, CDC and delivery process. Further, these equations establish that every

supplier or retailer belongs to one and only one route. Constraints (20) and (21) make sub-tours impossible. Eqs. (22) and

(23) take the consecutive movement of vehicles into consideration. Constraints (24) and (25) show whether or not a vehicle

arrives at and leaves a CDC. According to constraints (26) and (27), a retailer or supplier can be assigned to a CDC only if there

is a route from that CDC going through that retailer or supplier. Constraints (28) and (29) indicate that the quantity of loaded

and unloaded products in a vehicle cannot exceed the maximum capacity of the vehicle in the pickup and delivery processes.

Constraints (30) to (33) enforce that all time windows are respected. Eqs. (34) and (35) show the calculations for earliness

and tardiness penalty in the delivery process. Finally, constraints (36) and (37) guarantee the binary and non-negativity of

the corresponding decision variables.

3. Proposed solution approach

The proposed two-phase model is a fuzzy possibilistic–stochastic MILP that incorporates various uncertainties-concepts

into the cross-docking distribution networks. To solve the model, a hybrid solution approach is developed based on fuzzy

possibilistic programming and stochastic programming. For this purpose, the original model under uncertainty is trans-

formed into an equivalent auxiliary crisp model by applying an efficient FPSP solution approach resulted from the hybrid-

ization of the recent new effective approaches presented by Liu et al. [20], Jimenez et al. [21] and Pishvaee and Torabi [22]:

(a) fuzzy possibilistic programming and (b) chance-constraint programming. The proposed hybrid FPSP solution approach is

employed to find the final preferred compromise solution under uncertainty.

3.1. Hybrid FPSP solution approach

Parameters in the objective function, technological coefficients and right hand sides of the MILP model are addressed as

uncertain values in nature. For this purpose, the chance-constrained programming is integrated within the fuzzy possibilistic

framework for taking account of distribution information of the MILP model’s right-hand sides. Also, appropriate possibility

distributions of the parameters in the objective function are determined according to the definition of the expected interval

(EI) and expected value (EV) of fuzzy numbers. Finally, it results in a hybrid FPSP model as follows:

Minimize f ¼ eCX: ð38Þ

Subject to:

eAXfPeB; ð39Þ

with

eB ¼ b1; b2; . . . ; bm0
1
; b

ðp1Þ
m0

1
þ1; b

ðp2Þ
m0

1
þ2; . . . ; b

pm0�m0
1

� �

m0

0
@

1
A
; xj P 0; xj 2 X; j ¼ 1;2; . . . ;n;

where that eC is a triangular fuzzy number, Eq. (40) can be expressed as the membership function of ec:

lec ðxÞ ¼

fcðxÞ ¼ x�cp

cm�cp
if cp 6 x 6 cm

1 if x ¼ cm

gcðxÞ ¼ co�x
co�cm

if cm 6 x 6 co

0 if x 6 cporx P co

8
>>><
>>>:

ð40Þ

The EI and EV of triangular fuzzy number eC can be obtained as follows [21,22]:

EIðecÞ ¼ Ec
1; E

c
2

� �
¼

Z 1

0

f�1
c ðxÞdx;

Z 1

0

g�1
c ðxÞdx

� 	
¼ 1

2
cp þ cmð Þ;1

2
cm þ coð Þ

� 	

and

EVðecÞ ¼ Ec
1 þ Ec

2

2
¼ cp þ 2cm þ co

4
:

Constraints in (39) have fuzzy left hand-side and right hand-side coefficients. In addition, some of the right-hand sides in

(39), (i.e., b
ðp1Þ
m0

1
þ1; b

ðp2Þ
m0

1
þ2; . . . ; b

ðpm0�m0
1
Þ

m0 ) are presented as probability distributions. Hence, if below conditions hold in terms of le-

vel sets,
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lAij
ðaijÞjaij 2 ½0;1�

n o
¼ fai1;ai2; . . . ;aiRg;

0 6 ai1 6 ai2 6 . . . 6 aiR 6 1; i ¼ 1;2; . . . ;m0
: ð41Þ

Then, fuzzy constraints in (39) can be replaced by the following 2R precise inequalities, in which R indicates R levels of

a-cut [23,24].

AlX 6 Bl
; l ¼ 1;2; . . . ;R; ð42Þ

AlX 6 Bl
; l ¼ 1;2; . . . ;R; ð43Þ

where

Al ¼ supðAlÞ;

Bl ¼ supðBlÞ;

Al ¼ infðAlÞ;

Bl ¼ infðBlÞ:

Model (38) can be transformed into a conventional linear programming problem based on [20–22] as follows:

Minimize f ¼ EVðeCÞX: ð44Þ

Subject to:

Xn

j¼1

ðasijXÞ 6 Bs
i ; ð45Þ

with Bs
i ¼

bs
i when i ¼ 1;2; . . . ;m0

1; s ¼ 1;2; . . . ;R1

b
sðpiÞ
i when i ¼ m0

1 þ 1;m0
1 þ 2; . . . ;m0

1; s ¼ R1 þ 1;R1 þ 2; . . . ;R

(

Xn

j¼1

ðasijXÞ P Bs
i ; ð46Þ

with Bs
i ¼

bs
i when i ¼ 1;2; . . . ;m0

1; s ¼ 1;2; . . . ;R1

b
sðpiÞ
i when i ¼ m0

1 þ 1;m0
1 þ 2; . . . ;m0

1; s ¼ R1 þ 1;R1 þ 2; . . . ;R

(

xj P 0; j ¼ 1;2; . . . ;n: ð47Þ

For the right-hand side of constraint, boundaries of its fuzzy intervals under any a-cut levels have random characteristics.

They can be presented as normal distributions as follows:

p½b2ðsÞ� ¼
1ffiffiffiffiffiffiffi
2p

p
r

exp �
½b2ðsÞ � l�2

2r2

( )
ð48Þ

and

p½b2ðsÞ� ¼
1ffiffiffiffiffiffiffi
2p

p
r

exp � ½b2ðsÞ � l�2

2r2

( )
: ð49Þ

where l and l are expected values of b2ðsÞ and b2ðsÞ, respectively; Also, r2 and r2 are the relevant variances [20].

Consequently, the delimited decision space as defined in (45) to (47) will be more robust in dealing with uncertainties for

the cross-docking distribution networks. According to [20] as the problem dimension can be expanded to elaborate the

uncertain distribution networks, the robustness of the mathematical programming is remarkably enhanced.

3.2. FPSP model of multiple CDCs location (phase one)

According to the above descriptions, the FPSP model for multiple CDCs location problem in the first phase of the proposed

MILP model can be provided as follows:
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MinimizeZ1 ¼
XT

t0¼1

Xc

k¼1

Fp
k þ 2Fm

k þ Fo
k þ OCp

k;t0 þ 2OCm
k;t0 þ OCo

k;t0

4

 !
xk

þ
XT

t0¼1

Xc

k¼1

Xq

p¼1

XTmax

t¼Tmin

HCp
k;p;t0 þ 2HCm

k;p;t0 þ HCo
k;p;t0

4

 !
Sp;k;t;t0

þ
XT

t0¼1

Xq

p¼1

Xm

i0¼1

Xc

k¼1

XTmax

t¼Tmin

X i0

p;k;t;t0
Dist

p

i0 ;k þ 2Dist
m
i0 ;k þ Dist

o
i0 ;k

4

 !
Cp

i0 ;k
þ 2Cm

i0 ;k þ Co
i0 ;k

4

 !

þ
XT

t0¼1

Xq

p¼1

Xn

i¼1

Xc

k¼1

XTmax

t¼Tmin

X i
p;k;t;t0

Dist
p
i;k þ 2Dist

m
i;k þ Dist

o
i;k

4

 !
Cp
i;k þ 2Cm

i;k þ Co
i;k

4

 !
: ð50Þ

Subject to:

Xc

k¼1

XTSd�1

t¼Tmin

Xi0

p;k;t;t0 ¼ 0; 8i0;p; t0; ð51Þ

Xc

k¼1

XTEd

t¼TSd

Xi0

p;k;t;t0 6 1; 8i0; p; t0; ð52Þ

Xc

k¼1

XTmax

t¼DEdþ1

X i0

p;k;t;t0 ¼ 0; 8i0; p; t0; ð53Þ

Xc

k¼1

XTSp�1

t¼Tmin

X i
p;k;t;t0 ¼ 0; 8i;p; t0; ð54Þ

Xc

k¼1

XTEp

t¼TSp

Xi
p;k;t;t0 ¼ 1; 8p; i; t0 and Q i;p;t0 ¼ 1; ð55Þ

Xc

k¼1

XTmax

t¼TEpþ1

X i
p;k;t;t0 ¼ 0; 8p; i; t0; ð56Þ

Xq

p¼1

Sp;k;t;t0 6 capk;t0 ; 8k; t0 and Tmin 6 t 6 Tmax; ð57Þ

Sp;k;t0 ;Tmin�1
¼ 0; 8p; k; t0; ð58Þ

Sp;k;t;t0 ¼ Sp;k;t�1;t0 �
Xm

i0¼1

Xi0

p;k;t;t0Q i0 ;p;t0Ami0 ;p;t0 þ
Xn

i¼1

Xi
p;k;t;t0Q i;p;t0Ami;p;t0 ; 8p; k; t0 and Tmin 6 t 6 Tmax; ð59Þ

Xc

k¼1

Xn

i¼1

Xi
p;k;t;t0Q i;p;t0Ami;p;t0 �

Xc

k¼1

Xm

i0¼1

X i0

p;k;t;t0Q i0 ;p;t0Ami0 ;p;t0 P 0; 8p; t0 and Tmin 6 t 6 Tmax; ð60Þ

Xc

k¼1

sup Fo
k � a Fo

k � Fm
k

� �� �
; Fp

k þ a Fm
k � Fp

k

� �� �� �� �
xk 6 sup TCo � a TCo � TCm� �� �

; TCp þ a TCm � TCp� �� �� �pi
; ð61Þ

Xc

k¼1

inf ðFo
k � aðFo

k � Fm
k ÞÞ; ðF

p
k þ aðFm

k � Fp
kÞÞ

� �� �
xk P inf ðTCo � aðTCo � TCmÞÞ; ðTCp þ aðTCm � TCpÞÞ

� �pi
; ð62Þ

Xi0

p;k;t;t0 6 xk; 8i0;p; k; t0 and Tmin 6 t 6 Tmax; ð63Þ

Xi
p;k;t;t0 6 xk; 8i;p; k; t0 and Tmin 6 t 6 Tmax; ð64Þ
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Sp;k;t;t0 P 0; 8p; k; t0 and Tmin 6 t 6 Tmax; ð65Þ

Xi
p;k;t;t0 ; Xi0

p;k;t;t0 ; xk 2 f0;1g: ð66Þ

3.3. FPSP model of vehicle routing scheduling (phase two)

According to the above descriptions, the FPSP model for vehicle routing scheduling with multiple CDCs in the second

phase of the proposed model can be provided as follows:

Minimize Z2 ¼
X

i2P[K

X

j2P[K

X

v2V

cpi;j þ 2cmi;j þ coi;j
4

 !
xijv þ

X

i02D[K

X

j02D[K

X

v 02V 0

cp
i0 ;j0

þ 2cm
i0 ;j0

þ co
i0 ;j0

4

 !
xi0 j0v 0

þ
X

i02D

X

j02D

X

v
02V 0

X

p

Ei0 þ Li0ð Þxi0 j0v 0 þ
X

i2K

X

j2P

X

v2V

cpv þ 2cm
v
þ co

v

4

� �
xijv þ

X

i02K

X

j02D

X

v
02V 0

cp
v
0 þ 2cm

v
0 þ co

v
0

4

� �
xi0 j0v 0 : ð67Þ

Subject to:

X

i2P[K

X

v2V
xijv ¼ 1; 8j 2 P; ð68Þ

X

i02D[K

X

v
02V 0

xi0j0v 0 ¼ 1; 8j0 2 D; ð69Þ

uiv � ujv þ nxijv 6 n� 1; 8i; j 2 P and 8v 2 V ; ð70Þ

ui0v 0 � uj0v 0 þmxi0j0v 0 6 m� 1; 8i0; j0 2 D and 8v 0 2 V 0
; ð71Þ

X

i2P[K
xijv ¼

X

j2P[K
xjiv ; 8i 2 P [ K and 8v 2 V ; ð72Þ

X

i02D[K
xi0j0v 0 ¼

X

j02D[K
xi0j0v 0 ; 8i0 2 D [ K and 8v 0 2 V 0

; ð73Þ

X

i2K

X

j2P
xijv 6 1; 8v 2 V ; ð74Þ

X

i02K

X

j02D
xi0 j0v 0 6 1; 8v 0 2 V 0

; ð75Þ

�Zkj þ
X

l2P[K
ðxilv þ xljvÞ 6 1; 8i 2 K; 8j 2 P and 8v 2 V ; ð76Þ

�Zkj0 þ
X

l02D[K
ðxi0 l0v 0 þ xl0 j0v 0 Þ 6 1; 8i0 2 K; 8j0 2 D and 8v 0 2 V 0

; ð77Þ

wiv þ
Xq

p¼1

sup f op � a f op � fmp

� �� �
; f pp þ a fmp � f pp

� �� �h i� �
pip �wjv

6 ð1� xijvÞ sup ðCAo
v
� aðCAo

v
� CAm

v
ÞÞ; ðCAp

v
þ aðCAm

v
� CAp

v
ÞÞ

� �� �
; 8i 2 P [ K; 8j 2 P and 8v 2 V ; ð78Þ

wiv þ
Xq

p¼1

inf ðf op � aðf op � fmp ÞÞ; f pp þ aðfmp � f pp Þ
� �h i� �

pip �wjv

P ð1� xijvÞ inf ðCAo
v
� aðCAo

v
� CAm

v
ÞÞ; ðCAp

v
þ aðCAm

v
� CAp

v
ÞÞ

� �� �
; 8i 2 P [ K; 8j 2 P and 8v 2 V ; ð79Þ

wi0v 0 �
Xq

p¼1

inf ðf op � aðf op � fmp ÞÞ; f pp þ aðfmp � f pp Þ
� �h i� �

di0p �wj0v 0

P ð1� xi0j0v 0 Þ inf ðCAo
v
0 � a CAo

v
0 � CAm

v
0

� �
Þ; ðCAp

v
0 þ a CAm

v
0 � CAp

v
0

� �
Þ

� �� �
; 8i0 2 D [ K; 8j0 2 D and 8v 0 2 V 0

; ð80Þ
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wi0v 0 �
Xq

p¼1

sup f op � a f op � fmp

� �� �
; f pp þ a fmp � f pp

� �� �h i� �
di0p �wj0v 0

6 1� xi0j0v 0
� �

sup CAo
v
0 � a CAo

v
0 � CAm

v
0

� �� �
; CAp

v
0 þ a CAm

v
0 � CAp

v
0

� �� �� �� �
; 8i0 2 D [ K; 8j0 2 D and 8v 0 2 V 0

; ð81Þ

atvi P a
tvmij þ tvoij

2

� �
þ ð1� aÞ

tvpij þ tvmij
2

 !
; 8v 2 V ; 8i 2 K and 8j 2 P; ð82Þ

atv
0

i0 P a
tv

0m
i0 j0 þ tv

0o
i0j0

2

 !
þ ð1� aÞ

tv
0p

i0 j0
þ tv

0m
i0j0

2

 !
; 8v 0 2 V 0

; 8i0 2 K and 8j0 2 D; ð83Þ

atvi þ sup tvoij � aðtvoij � tvmij Þ
� �

; tvpij þ aðtvoij � tvpij Þ
� �h i� �

� atvj

6 ð1� xijvÞ sup To
v
� aðTo

v
� Tm

v
Þ

� �
; ðTp

v
þ aðTm

v
� Tp

v
ÞÞ

� �pi� �
; 8i; j 2 P and 8v 2 V ; ð84Þ

atvi þ inf tvoij � aðtvoij � tvmij Þ
� �

; tvpij þ aðtvoij � tvpij Þ
� �h i� �

� atvj

P ð1� xijvÞ inf ðTo
v
� aðTo

v
� Tm

v
ÞÞ ; Tp

v
þ aðTm

v
� Tp

v
Þ

� �� �pi� �
; 8i; j 2 P and 8v 2 V ; ð85Þ

atv
0

i0 þ sup tv
0o

i0 j0 � aðtv 0o
i0 j0 � tv

0m
i0j0 Þ

� �
; tv

0p
i0 j0

þ aðtv 0o
i0j0 � tv

0p
i0 j0

Þ
� �h i� �

� atv
0

j0

6 ð1� xi0 j0v 0 Þ sup ðTo
v
0 � aðTo

v
0 � Tm

v
0 ÞÞ; ðTp

v 0 þ aðTm
v
0 � Tp

v 0 ÞÞ
� �pi� �

; 8i0; j0 2 D and 8v 0 2 V ; ð86Þ

atv
0

i0 þ inf tv
0o

i0 j0 � aðtv 0o
i0 j0 � tv

0m
i0j0 Þ

� �
; tv

0p
i0 j0

þ aðtv 0o
i0j0 � tv

0p
i0 j0

Þ
� �h i� �

� atv
0

j0

P ð1� xi0j0v 0 Þ inf ðTo
v
0 � aðTo

v
0 � Tm

v
0 ÞÞ; ðTp

v
0 þ aðTm

v
0 � Tp

v
0 ÞÞ

� �pi� �
; 8i0; j0 2 D and 8v 0 2 V ; ð87Þ

Ei0 ¼ maxð0; di0 � atv
0

i0 Þai0 ; 8i0 2 D and 8v 0 2 V 0
; ð88Þ

Li0 ¼ maxð0; atv 0

i0 � di0 Þbi0 ; 8i0 2 D and 8v 0 2 V 0
; ð89Þ

xijv ; xi0 j0v 0 ; Zkj; Zkj0 2 f0;1g; ð90Þ

uiv ;ui0v 0 ;wiv ;wi0v 0 ; atvi ; at
v
0

i0 P 0: ð91Þ

4. Computational experiments

In this section, to evaluate the performance of the proposed two-phase MILP model and the usefulness of the proposed

FPSP solution approach, numerical experiments are provided. The considered cross-docking distribution in two phases aims

to determine the minimum number of CDCs among a set of location sites so that each retailer demands must be met. Then,

the optimal schedule is obtained for the vehicle routing problem with multiple CDCs.

Five test problems for two phases of the proposed MILP model are taken into consideration. Their sizes are reported in

Table 1. The needed data for pickup nodes, delivery nodes and information of the amount of different products in the three

test problems are reported in Tables 2–4. The nominal data are randomly generated by uniform distributions as given in

Table 5.

According to Tables 1–5, the proposed two-phase fuzzy possibilistic–stochastic MILP model is solved and reported by

GAMS optimization software. The numerical experiments for each size are calculated under three a-cut levels

(a ¼ 0:1;0:4;0:6). It is pointed out that the boundaries of fuzzy intervals for the right-hand side of constraint under a-cut
levels have random characteristics, and they can be presented as normal distributions. Also, the values of the probability

pi set to 0.1 and 0.3 in the five test problems. Finally, the computational results for the proposed model in the first and second

phases are reported in Tables 6 and 7, respectively.

Computational results demonstrate that the applicability and suitability of the proposed fuzzy possibilistic–stochastic

MILP model in an uncertain environment. The proposed FPSP solving approach can explicitly deal with uncertainties and

complexities by transforming the mathematical programming model into a deterministic model. Hence, in the proposed hy-

brid solution m0 imprecise constraints are converted into 2Rm0 precise inclusive constraints that agree with Ra-cut levels,
along with the concept of feasibility degree in the objective function based on the EV and the EI of fuzzy numbers.
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It can be observed that the constraints under various a-cut levels can effectively take complexities of the decision space

into consideration. The constraints can assist top managers or decision makers to take account of numerous potential com-

binations of uncertainties represented in fuzzy intervals and reliabilities represented by a-cut levels in the logistics compa-

nies. Hence, the compromise solution is located at the boundary of the two sets of constraints with ‘‘6’’ and ‘‘P’’

Table 1

Sizes of five test problems.

Problem

No.

No. of suppliers or

pickup nodes (n)

No. of potential cross-

docking centers (c)

No. of retailers or

delivery nodes (m)

No. of

products

(q)

No. of vehicles in

pickup process (V)

No. of vehicles in

delivery process (V0)

1 3 2 3 2 2 2

2 4 3 5 3 2 3

3 6 4 7 3 3 4

4 7 4 8 3 4 5

5 8 5 9 4 5 6

Table 2

Data for pickup, delivery and amount of multiple products for the first test problem.

Node Product Amount Time

1 2 1 2 Start End

D1

p p
40 35 8 17

D2

p
30 0 7 19

D3

p p
25 15 5 13

P1
p p

30 35 10 22

P2
p

0 29 12 20

P3
p p

30 38 15 18

Table 3

Data for pickup, delivery and amount of multiple products for the second test problem.

Node Product Amount Time

1 2 3 1 2 3 Start End

D1

p p
15 0 25 4 14

D2

p p p
23 5 34 6 16

D3

p p
0 30 11 11 25

D4

p p p
20 15 17 2 19

P1
p p p

10 13 25 7 25

P2
p p p

2 19 30 9 3

P3
p p

210 30 0 5 14

P4
p p

40 0 18 9 22

P5
p p p

8 28 25 10 19

Table 4

Data for pickup, delivery and amount of multiple products for the third test problem.

Node Product Amount Time

1 2 3 1 2 3 Start End

D1

p p p
22 10 15 5 25

D2

p p
0 10 20 8 32

D3

p
0 0 9 6 25

D4

p p
15 0 11 4 20

D5

p p p
5 10 15 11 27

D6

p
16 0 0 15 28

P1
p

0 13 0 3 14

P2
p p

14 0 27 4 21

P3
p p

30 8 0 9 35

P4
p p p

16 21 17 8 38

P5
p p

0 6 20 2 19

P7
p p p

10 9 25 3 31
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relationships, respectively. Finally, the proposed fuzzy possibilistic–stochastic MILP model tackling different uncertainties

can illustrate a preferred compromise between optimality and reliability of the cross-docking distribution networks. It

can properly depict a realistic reflection of the complexities in the networks. In fact, the decision makers can justify the deci-

sion schemes for the cross-docking planning under uncertainty through the incorporation of their implicit knowledge and

experience.

5. Concluding remarks

To address the location and routing problem in the cross-docking distribution networks, this paper first develops a novel

two-phase mathematical programming model. For this purpose, two new mixed-integer linear programming (MILP) are

Table 5

Sources of random generation of nominal data for five test problems.

Test problems

Parameters Problem No. 1 Problem No. 2 Problem No. 3 Problem No. 4 Problem No. 5

HCk,p,t0 �Uniform (80,250) �Uniform (100,250) �Uniform (120,300) �Uniform (100,320) �Uniform (80,350)

Disti,k,

Disti0 ,k

�Uniform (22,50) �Uniform (15,55) �Uniform (11,60) �Uniform (10,65) �Uniform (10,70)

TCs �Uniform

(4000,7000)

�Uniform

(8500,13000)

�Uniform

(14000,20000)

�Uniform

(12,000,20,000)

�Uniform

(11000,24000)

OCkt0 �Uniform (100,400) �Uniform (150,500) �Uniform (200,600) �Uniform (200,700) �Uniform (200,800)

Fk �Uniform

(1500,6000)

�Uniform (2000,7000) �Uniform (3000,8000) �Uniform (2000,8000) �Uniform (2000,9000)

Ci,k, Ci0 ,k �Uniform (30,300) �Uniform (40,350) �Uniform (50,400) �Uniform (40,450) �Uniform (40,500)

cij, ci0 j0 �Uniform (100,260) �Uniform (110,350) �Uniform (120,400) �Uniform (100,500) �Uniform (100,600)

CAv, CAv0 �Uniform (15,40) �Uniform (15,55) �Uniform (10,60) �Uniform (10,65) �Uniform (10,70)

tvij ; t
v
0

i0 j0
�Uniform (2,10) �Uniform (3,15) �Uniform (5,20) �Uniform (5,25) �Uniform (4,30)

Ts
v
; Ts

v
0 �Uniform (10,65) �Uniform (20,70) �Uniform (15,100) �Uniform (15,120) �Uniform (10,140)

Capk,t0 �Uniform (150,600) �Uniform (250,700) �Uniform (350,800) �Uniform (300,850) �Uniform (200,900)

Table 6

Computational results for five test problems in the first phase of the proposed MILP model under different combination of a and pi values.

Test problems Probability values Objective function values

a-cut levels

0.1 0.4 0.6

Problem No. 1 pi = 0.1 4812.8 4696 4506.3

pi = 0.3 4542.1 4488.7 4403.2

Problem No. 2 pi = 0.1 8539 8310.9 8285

pi = 0.3 8371.5 8277 8047

Problem No. 3 pi = 0.1 13312 12645.4 10881.3

pi = 0.3 12181.7 11490 10121.6

Problem No. 4 pi = 0.1 18600.2 17903.5 15930.1

pi = 0.3 16905.8 16206 14979.2

Problem No. 5 pi = 0.1 29760.3 26855.2 24502.1

pi = 0.3 27099.2 25939.4 24202.9

Table 7

Computational results for five test problems for the second phase of proposed MILP model under different combination of a and pi values.

Test problems Probability values Objective function values

a-cut levels

0.1 0.4 0.6

Problem No. 1 pi = 0.1 3039 2879.2 2623

pi = 0.3 2680.4 2539 2301.6

Problem No. 2 pi = 0.1 5012 4910 4675

pi = 0.3 4865.1 4497.8 4213.7

Problem No. 3 pi = 0.1 7560 7401.5 7216.9

pi = 0.3 7099.3 6843.6 6700.2

Problem No. 4 pi = 0.1 13408.9 13322 12800.4

pi = 0.3 12978.7 12510.4 12260.3

Problem No. 5 pi = 0.1 17601.4 16917.5 16087.5

pi = 0.3 16419.3 15010 14271.7
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formulated to be closer to the needs of real-life applications. The two models are integrated for the location problem of mul-

tiple cross-docking centers (CDCs) in the first phase and a vehicle routing scheduling problem with multiple CDCs in the sec-

ond phase in the distribution networks. Second, the uncertainty in parameters of the incorporated two-phase model that has

critical influence from strategic/tactical and operational decision levels is taken into consideration for the first time in the

literature. Third, to tackle uncertain parameters a new hybrid solution approach is introduced by combining fuzzy possibi-

listic programming and chance-constrained programming from the new recent effective methods. The uncertain parameters

include distance of pickup and delivery nodes from CDCs, transportation costs, operating cost at CDCs, operational cost of

vehicles, volume capacity of vehicles in pickup and delivery processes, time for vehicles to move between nodes, and max-

imum working time of vehicles. The proposed solution approach can effectively consider features of cross-docking distribu-

tion networks with complex and uncertain information. It can explicitly reflect uncertainties and complexities in such a

network without unrealistic simplifications. Also, the uncertain parameters in the proposed two-phase mathematical pro-

gramming model can be represented as probability density functions and/or fuzzy membership functions in the constraints.

They can also be specified based on the concept of feasibility degree in the imprecise objective function by taking account of

the strong mathematical concepts including expected interval and expected value of fuzzy numbers. It leads to an enhanced

robustness of the optimization process and resulting solution. The computational results under combined a-cut levels and

the values of the probability pi are suitable for the logistics managers or decision makers to make the best decisions for the

cross-docking planning through the incorporation of their implicit experience and knowledge. To the best knowledge of the

authors, this paper is first to consider location and routing scheduling problem with the cross-docking under the fuzzy-sto-

chastic environment, and to simultaneously propose the fuzzy possibilistic and chance-constrained programming to handle

the uncertainty in such a cross-docking distribution network. Finally, the proposed fuzzy possibilistic–stochastic MILP model

tackling different uncertainties can demonstrate a preferred compromise solution between optimality and reliability of deci-

sion schemes in logistics companies. Since the two-phase MILP model presented in this paper is the primary attempt in the

cross-docking, different directions can be recommended for future research. For instance, it is suggested that the proposed

fuzzy possibilistic–stochastic solution approach can be hybridized with the robust optimization theory associated with

highly complex and uncertain conditions. Also, future research directions can be in addressing the location of cross-docking

centers and vehicle routing scheduling problem when distributions are unknown. Integrating the vehicle routing scheduling

problem with the sequencing problem of inbound and outbound trucks under uncertainty remains as a future research

study. Proposing effective heuristic and meta-heuristic algorithms can be another possible topic to solve large-sized

cross-docking problems. In addition, the presented solution approach can be employed in numerous practical problems in

which probabilistic distributions and fuzzy possibilistic information can be available concurrently.

Acknowledgement

The authors wish to thank the editor-in-chief and respected referees for valuable comments and recommendations that

have led to the improvement of this paper.

References

[1] M.A. Waller, C.R. Cassady, J. Ozment, Impact of cross-docking on inventory in a decentralized retail supply chain, Transp. Res. E 42 (2006) 359–382.
[2] P. Chen, Y. Guo, A. Lim, B. Rodrigues, Multiple crossdocks with inventory and time windows, Comput. Oper. Res. 33 (1) (2006) 43–63.
[3] K. Lee, B.S. Kim, C.M. Joo, Genetic algorithms for door-assigning and sequencing of trucks at distribution centers for the improvement of operational

performance, Expert Syst. Appl. 39 (2012) 12975–12983.
[4] L. Yeung, C.K.M. Lee, Adoption of genetic algorithm for cross-docking scheduling with time window, Decis. Making Supply Chain Integr. Decis. Eng. 1

(2012) 1–22.
[5] M.E. Cóccola, C.A. Méndez, M. Zamarripa, A. Espuña, Integrated production and distribution management with cross docking in supply chains, Comput.

Aided Chem. Eng. 31 (2012) 1050–1054.
[6] D. Konur, M.M. Golias, Cost-stable truck scheduling at a cross-dock facility with unknown truck arrivals: a meta-heuristic approach, Transp. Res. E 49

(2013) 71–91.
[7] T.W. Liao, P.J. Egbelu, P.C. Chang, Simultaneous dock assignment and sequencing of inbound trucks under a fixed outbound truck schedule in multi-

door cross docking operations, Int. J. Prod. Econ. 141 (2013) 212–229.
[8] C.M. Joo, B.S. Kim, Scheduling compound trucks in multi-door cross-docking terminals, Int. J. Adv. Manuf. Technol. 64 (2013) 977–988.
[9] C.S. Sung, S.H. Song, Integrated service network design for a cross-docking supply chain network, J. Oper. Res. Soc. 54 (12) (2003) 1283–1295.
[10] H. Donaldson, E.L. Johnson, H.D. Ratliff, M. Zhang, Schedule-driven cross-docking networks. Technical Report 9904, Georgia Institute of Technology,

Atlanta, GA, USA, 1999.
[11] R. Musa, J.P. Arnaout, H. Jung, Ant colony optimization algorithm to solve for the transportation problem of cross-docking network, Comput. Ind. Eng.

59 (1) (2010) 85–92.
[12] C.S. Sung, W. Yang, An exact algorithm for a cross-docking supply chain network design problem, J. Oper. Res. Soc. 59 (2008) 119–136.
[13] M. Gümüs, J.H. Bookbinder, Cross-docking and it simplifications in location–distribution systems, J. Bus. Logistics 25 (2) (2004) 199–228.
[14] V. Jayaraman, A. Ross, A simulated annealing methodology to distribution network design and management, Eur. J. Oper. Res. 144 (2003) 629–645.
[15] A. Ross, V. Jayaraman, An evaluation of new heuristics for the location of cross-docks distribution centers in supply chain network design, Comput. Ind.

Eng. 55 (2008) 64–79.
[16] M. Bachlaus, M.K. Pandey, C. Mahajan, R. Shankar, M.K. Tiwari, Designing an integrated multi-echelon agile supply chain network: a hybrid taguchi-

particle swarm optimization approach, J. Intell. Manuf. 19 (6) (2008) 747–761.
[17] Y.H. Lee, J.W. Jung, K.M. Lee, Vehicle routing scheduling for cross-docking in the supply chain, Comput. Ind. Eng. 51 (2) (2006) 247–256.
[18] C.J. Liao, Y. Lin, S.C. Shih, Vehicle routing with cross-docking in the supply chain, Expert Syst. Appl. 37 (10) (2010) 6868–6873.
[19] M. Wen, J. Larsen, J. Clausen, J.F. Cordeau, G. Laporte, Vehicle routing with cross-docking, J. Oper. Res. Soc. 60 (12) (2009) 1708–1718.
[20] L. Liu, G.H. Huang, Y. Liu, G.A. Fuller, G.M. Zeng, A fuzzy-stochastic robust programming model for regional air quality management under uncertainty,

Eng. Optim. 35 (2) (2003) 177–199.

S.M. Mousavi et al. / Applied Mathematical Modelling 38 (2014) 2249–2264 2263



[21] M. Jimenez, M. Arenas, A. Bilbao, M.V. Rodriguez, Linear programming with fuzzy parameters: an interactive method resolution, Eur. J. Oper. Res. 177
(2007) 1599–1609.

[22] M.S. Pishvaee, S.A. Torabi, A possibilistic programming approach for closed-loop supply chain network design under uncertainty, Fuzzy Sets Syst. 161
(2010) 2668–2683.

[23] A.L. Soyster, Convex programming with set-inclusive constraints: applications to inexact linear programming, Oper. Res. 21 (1973) 1154–1157.
[24] Y. Leung, Spatial Analysis and Planning Under Imprecision (Studies in Regional Science and Urban Economics), Elsevier Science Publishers, Amsterdam,

The Netherlands, 1988.

2264 S.M. Mousavi et al. / Applied Mathematical Modelling 38 (2014) 2249–2264


	Location of cross-docking centers and vehicle routing  scheduling under uncertainty: A fuzzy possibilistic–stochastic programming model
	1 Introduction
	2 Modeling cross-docking centers location and vehicle routing scheduling problem
	2.1 Problem description
	2.2 Proposed FPSP model for cross-docking distribution networks
	2.2.1 Multiple CDCs location model (phase one)
	2.2.2 Vehicle routing scheduling model with multiple CDCs (phase two)


	3 Proposed solution approach
	3.1 Hybrid FPSP solution approach
	3.2 FPSP model of multiple CDCs location (phase one)
	3.3 FPSP model of vehicle routing scheduling (phase two)

	4 Computational experiments
	5 Concluding remarks
	Acknowledgement
	References


