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a b s t r a c t

This paper presents a novel multiple attribute group decision-making (MAGDM) model

based on the compromise ratio method under an interval-valued intuitionistic fuzzy (IVIF)

environment. The compromise ratio method under uncertainty is introduced by a group of

experts based on the concept that the chosen alternative should be as close as possible to

the IVIF-positive-ideal point and as far away from the IVIF-negative-ideal point as possible

concurrently. First, an IVIF-weighted geometric averaging (IVIFWGA) operator is employed

to aggregate all individual IVIF-decision matrices provided by a group of experts into a col-

lective IVIF-decision matrix. Two new basic IVIF-operations are introduced to handle the

evaluation process. Then, an extended collective index in an IVIF environment is proposed

to discriminate among alternatives for the evaluation process in terms of subjective and

objective information. Finally, to demonstrate the suitability and applicability of the pro-

posed IVIF-MAGDM model, an application example of reservoir flood control operation is

given from the recent literature.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Since the primary work of Zadeh [1], the traditional 0–1 logic was developed to fuzzy logic, described by a membership
function between 0 and 1. This development leads to important theoretical extensions and widely used approaches that are
successfully applied in many engineering and management fields (e.g., [2–7]). In the last two decades, intuitionistic fuzzy
sets (IFSs) were first presented by Atanassov [8] as an extension of Zadeh’s fuzzy sets. The IFSs are implemented in numerous
industrial applications with remarkable results (e.g., [9–11]). By considering the real-valued membership and non-member-
ship functions represented in interval values, Atanassov and Gargov [12] introduced the notion of the IFSs to interval-valued
intuitionistic fuzzy sets (IVIFSs). The basic feature of the IVIFS is that the values of its membership function and non-mem-
bership function are intervals rather than exact numbers [13]. Thus, the IVIFSs can properly take into consideration the
ambiguity in the information as well as the fuzziness in experts or decision makers (DMs)’ preferences and judgments in
order to involve different aspects of problems in real-life decision making.

Many real-life decision problems can be taken within the frame of multiple attribute group decision making (MAGDM).
The purpose of the MAGDM is to choose an appropriate alternative among a set of alternatives by assessing multiple
conflicting attributes by a group of experts. Such decision problems can be solved by using several existing reputable
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MAGDM methods, namely GVIKOR (group Vlse Kriterijuska Optimizacija I Komoromisno Resenje) and GTOPSIS (group tech-
nique for order preference by similarity to ideal solution), developed by Opricovic [14] and Hwang and Yoon [15], respec-
tively. Both GVIKOR and GTOPSIS methods are taken into account an aggregation function by characterizing the closeness
to the ideal point. These methods can easily structure the problem corresponding to the DMs’ needs along with adopted re-
sults [16–19].

For the relate literature, some researchers have taken the VIKOR and TOPSIS methods under incomplete and uncertain
environment. For instance, Opricovic and Tzeng [20] developed the VIKOR method for analyzing the planning strategies
by reducing the future social and economic costs in the area with potential natural hazard. Tzeng et al. [21] applied and com-
pared VIKOR and TOPSIS methods to determine the best compromise alternative fuel model in solving a public transporta-
tion problem. Chang and Hsu [22] applied the VIKOR method to determine the best feasible solution according to the
selected criteria, including geographical and meteorological factors. The objective of their study was to establish the priority
ranking of land-use restrictions in the Tseng-Wen reservoir watershed. Hashemi et al. [23] applied the VIKOR method based
on intuitionistic fuzzy sets under multiple criteria to select the potential alternatives in a large-scale water resources devel-
opment scheme. Vahdani et al. [24] presented the interval-valued fuzzy VIKOR method and built a practical maintenance
strategy selection problem to verify their proposed method. Mousavi et al. [3] proposed a stochastic VIKOR method for selec-
tion problems in which a group of the DMs described a value for an alternative vs. an attribute by the use of linguistic vari-
ables. Opricovic [25] utilized the fuzzy VIKOR method to study the development of a reservoir system for the storage of
surface flows of the Mlava River and its tributaries for regional water supply. Liou et al. [26] applied a modified VIKOR meth-
od to improve service quality among domestic airlines in Taiwan. Their model allows DMs to understand the gaps between
alternatives and aspired-levels in practice. Vinodh et al. [27] selected the VIKOR method for concept selection in the agile
manufacturing. Mishra et al. [28] adopted VIKOR method in a fuzzy environment to assess multiple attributes on suppliers’
performance and to select the best supplier among a group of alternative suppliers. Girubha and Vinodh [29] used the VIKOR
as a decision making tool for the selection of alternate material for instrument panel used in electric car and in order to eval-
uate this selection process in fuzzy environment. Park et al. [30] extended TOPSIS method to handling MAGDM problems
under an IVIF-environment where the information about attributes’ weights is partially known. Park et al. [31] developed
a procedure for solving MAGDM problems and extended the VIKOR method, in which all the preference information pro-
vided by the DMs is presented as IVIF-decision. Yücenur and Demirel [32] extended fuzzy VIKOR method to deal with the
criteria and select the most suitable alternative insurance. The VIKOR method focused on ranking from a set of alternatives
in the presence of conflicting criteria under fuzzy environment. Vahdani et al. [33] presented a new compromise solution
method by a group of experts or the DMs with traditional fuzzy sets to effectively solve the evaluation and selection prob-
lems. The method is applied to the contractor selection problem with multi-criteria and multi-judges under uncertainty.

The review of the literature shows that the compromise ratio method under modern fuzzy environment can be intro-
duced as a new research area for solving complex decision problems through the group decision making process. Although
the existing approaches have had contributions to decision making under uncertainty, most of the related literature (e.g.,
[3,5,32,33]) described the individual decision information with traditional fuzzy sets.

This paper presents a novel MAGDM model based on an extended compromise ratio method in an IVIF environment. The
major contributions of this paper are given below:

� Two new operations for interval-valued intuitionistic fuzzy sets are presented by taken the operational laws of
interval-valued intuitionistic fuzzy numbers (IVIFNs) into consideration.

� In the proposed compromise ratio method, IVIF-ideal separation and anti-ideal separation matrixes are constructed
based on the new subtraction operations between IVIFNs to discriminate among the alternatives in the group deci-
sion-making problems, unlike the previous studies which were based on traditional fuzzy sets and distances of
potential alternatives from the ideal solutions.

� An extended collective index in an IVIF-environment is proposed to rank alternatives according the concept of the
relative distance from the IVIF-positive-ideal and IVIF-negative-ideal points and the score and accuracy functions,
unlike the previous studies (e.g., [30,31]) which were based on Euclidean distances of each alternative with respect
to the reference points and Ref. [33] with traditional fuzzy numbers.

� The model has the ability to reflect both subjective judgment and objective information in real-life applications
under an IVIF environment. Characteristics of alternatives and decision attributes are represented by linguistic terms
and then are converted into IVIFNs.

It is worth to mention that the compromise ratio method presented by the authors [33] is employed in this paper for the
evaluation process; however, the main contributions and differences of the proposed model combined with a modern fuzzy
set in an IVIF-form are explained above unlike the previous studies (e.g., [30,31]). Furthermore, application example from the
recent literature is examined for the reservoir flood control operation to demonstrate the implementation process of the
IVIF-MAGDM model. The model can assist the DMs to make their efficient decisions for solving intricate decision problems
under uncertainty.

A limitation of the proposed IVIF-MAGDM as a generalized decision making model under uncertainty is that it employs
a new subtraction operation for calculating the distance between two IVIFNs. This operation is valid under some condi-
tions. In fact, these conditions should be met through the decision process. In some states, the experts or DMs may be
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asked to somewhat modify their opinions. Moreover, another limitation is values of the weights for the strategy of the
majority attributes (k and c) in the proposed model; these values are regarded as important input parameters for the rank-
ing step. Failing to choose proper values might change the output of the proposed IVIF-MAGDM model remarkably (i.e., the
ranking of alternatives). Hence, the values of k and c provided by the experts should be properly considered in the pro-
posed model.

The rest of this paper is organized as follows. The basic concepts, definitions and notations of VIKOR method and IVIFNs
are introduced in Section 2. In Section 3, a new IVIF-MAGDMmodel is proposed based on the combination of the concepts of
compromise ratio method and IVIFNs. In Section 4, an illustrative example, applying the proposed IVIF-MAGDM model to
evaluate alternatives of the reservoir flood control operation is presented, after which this paper discusses how the new
IVIF-MAGDM model is effective. Finally, conclusions and future research are presented in Section 6.

2. Preliminaries

2.1. VIKOR method for group decision making

Opricovic and Tzeng [20,34] introduced VIKORmethod for complex systems which means multi-criteria optimization and
compromise solution. This method focuses on ranking and selecting from a set of alternatives, and determines compromise
solutions for a problem with non-commensurable and conflicting criteria, which can help the DMs to reach a final decision.
Here, the compromise solution is a feasible solution which is the closest to the ideal solution point, and a compromise means
an agreement established by mutual concessions [35].

Suppose the MAGDM problem that has m decision alternatives, A1, A2, . . . , Am, n attributes, C1, C2, . . . , Cn, and l experts or
DMs, E1, E2, . . . , El. The structure of the decision matrix for kth expert can be expressed as follows:

;

f kij ; k = 1,2, . . . , l, i = 1,2, . . . ,m, j = 1,2, . . . ,n, is the performance rating value of the ith alternative vs. the jth attribute that is
evaluated by kth expert, and let wk

j be the relative weight vector about the attributes that is provided by kth expert. Then,
the performance rating and weight values that are provided by experts, can be aggregated by the arithmetic mean method,
fij ¼

1
l

Pl
k¼1f

k
ij and wj ¼

1
l

Pl
k¼1w

k
j .

After the aggregation process, for alternative Ai, the rating of the jth attribute and the relative weight of each attribute are
denoted by fij and Wj, respectively. Also, the best and worst values are regarded as f �j and f�j , respectively. The main VIKOR
method for decision making can be summarized as follows [20,34]:

Step 1: The best f �j and the worst f�j values of all criteria functions are calculated j = 1, 2, . . . , n. For the jth function as the
benefit, we have:

f �j ¼ max
i

f ij ð1Þ

and

f�j ¼ min
i

f ij: ð2Þ

Step 2: The values Si and Ri are provided; i = 1, 2, . . . ,m, by these relations:

Si ¼
X

n

j¼1

wjðf
�
j � fijÞ=ðf

�
j � f�j Þ; ð3Þ

Ri ¼ max
j

wjðf
�
j � fijÞ=ðf

�
j � f�j Þ; ð4Þ

where are the weights of criteria representing their relative importance. Also, Si represent the individual regrets/gaps, and Ri

represent the maximum individual gaps.
Step 3: The values Qi are computed by the relation as follows, i = 1, 2, . . . ,m:

Q i ¼ kðSi � S�Þ=ðS� � S�Þ þ ð1� kÞðRi � R�Þ=ðR� � R�Þ; ð5Þ

where

S� ¼ min
i

Si; S� ¼ max
i

Si; ð6Þ

R� ¼ min
i

Ri; R� ¼ max
i

Ri; ð7Þ

H. Hashemi et al. / Applied Mathematical Modelling 38 (2014) 3495–3511 3497



k demonstrates the weight of the strategy for the majority of attributes which is assumed to be k ¼ 0:5. MiniSi emphasizes
the minimization of the average sum of the individual regrets/gaps, and miniRi describes the minimization of the maximum
individual regret/gaps for prioritizing the improvement. In fact, S⁄ is the minimum value of Si, which is the maximum group
utility, and R⁄ is the minimum value of Ri, which is the minimum individual regret of the opponent. Also, Q is the ranking
index and it is provided according to the group utility and individual regret of the opponent.

Step 4: The alternatives are ranked by values of S, R and Q.
Step 5: Compromise solution the alternative A0 is obtained and then it is ranked as the best by the measure Q (minimum) if

two conditions are satisfied as follows:

C1. Acceptable advantage:

QðA00Þ � QðA0Þ P DQ ; ð8Þ

where A00 is an alternative with second position in the ranking list by Q; DQ = 1/(m � 1); m is the number of alternatives.
C2. Acceptable stability in decision-making:
Alternative A0 must also be the best ranked by S or/and R. This compromise solution is stable within a decision-making

process which could be voting by majority rule (when k > 0:5 is needed), or by consensus k � 0:5, or with veto (k < 0:5).
If one of the conditions is not satisfied, then a set of compromise solutions is proposed which consists of:

� Alternatives A0 and A00 if only condition C2 is not satisfied, or
� Alternatives A0;A00; . . . ;AðMÞ if condition C1 is not satisfied; A(M) is determined by the relation Q(A(M)) � Q(A0) < DQ for

maximum M (the positions of these alternatives are in closeness).

The best alternative, ranked by Q, is the one with the minimum value of Q. The main ranking result is the compromise
ranking list of alternatives and the compromise solution with the advantage rate.

2.2. Basic concepts and operations of interval-valued intuitionistic fuzzy sets

Let a set X be fixed, an IVIFS in X is defined as [12]:

~A ¼ hx; �l~AðxÞ; �m~AðxÞijx 2 X
� �

; ð9Þ

where �l~AðxÞ � ½0;1�; �m~AðxÞ � ½0;1�; x 2 X and sup �l~AðxÞ þ sup�m~AðxÞ 6 1; 8x 2 X. Especially, if

inf �l~AðxÞ ¼ sup �l~AðxÞ and inf �m~AðxÞ ¼ sup�m~AðxÞ, then the IVIFS ~A is reduced to an IFS.

For convenience, an IVIFS ~A is denoted by lL
~A
ðxÞ;lU

~A
ðxÞ

h i

; mL
~A
ðxÞ; mU

~A
ðxÞ

h iD E

, where lL
~A
ðxÞ;lU

~A
ðxÞ

h i

� ½0;1�; mL
~A
ðxÞ; mU

~A
ðxÞ

h i

�

½0;1�; lU
~A
ðxÞ þ mU

~A
ðxÞ 6 1 and for each element x we can calculate the hesitancy degree of an interval-valued intuitionistic

fuzzy of x e X in ~A defined as follows:

�p~A ¼ 1� lU
~A
ðxÞ � mU~A ðxÞ;1� lL

~A
ðxÞ � mL~AðxÞ

h i

: ð10Þ

Atanassov and Gargov [12] and Atanassov [36] first introduced some basic operations on IVIFSs, which not only can en-
sure that the operational results are IVIFSs but also are suitable for the calculus of variables under the IVIF-environment.
Motivated by the operations in Atanassov and Gargov [12], Atanassov [36], and Xu [37] defined four operational laws of IVI-
FNs, which can be employed in this paper, as follows:

Let ~a ¼ lL
~a;l

U
~a

� �

; mL
~a; m

U
~a

� �� �

and ~b ¼ lL
~b
;lU

~b

h i

; mL
~b
; mU

~b

h iD E

be any two IVIFNs, then

~a� ~b ¼ lL
~a þ lL

~b
� lL

~a 	 l
L
~b
;lU

~a þ lU
~b
� lU

~a 	 lU
~b

h i

; mL~a 	 m
L
~b
; mU~a 	 mU~b

h iD E

; ð11Þ

~a
 ~b ¼ lL
~a 	 l

L
~b
;lU

~a 	 lU
~b

h i

; mL~a þ mL~b � mL~a 	 m
L
~b
; mU~a þ mU~b � mU~a 	 mU~b

h iD E

; ð12Þ

k~a ¼ 1� ð1� lL
~aÞ

k
;1� ð1� lU

~a Þ
k

h i

; ðmL~aÞ
k
; ðmU~a Þ

k
h iD E

; k > 0; ð13Þ

~ak ¼ ðlL
~aÞ

k
; ðlU

~a Þ
k

h i

; 1� ð1� mL~aÞ
k
;1� ð1� mU~a Þ

k
h iD E

; k > 0; ð14Þ

which can ensure the operational results are also IVIFNs.
Yu et al. [38] defined a score function S to measure an IVIFN ~a as follows:

Sð~aÞ ¼
1

4
2þ lL

~a � mL~a þ lU
~a � mU~a

� �

; ð15Þ

where Sð~aÞ 2 ½0;1�. The larger the value of Sð~aÞ, the higher the IVIFN ~a is. Especially, if Sð~aÞ ¼ 1, then ~a ¼ ½1;1�; ½0;0�h i, which is
the largest IVIFN; if Sð~aÞ ¼ 0, then ~a ¼ ½0;0�; ½1;1�h i, which is the smallest IVIFN.
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In addition, Ye [39] defined an accuracy function H to evaluate the accuracy degree of an IVIFN as follows:

Hð~aÞ ¼ lL
~a þ lU

~a � 1þ
mL
~a þ mU

~a

2
; ð16Þ

where Hð~aÞ 2 ½�1;1�. The larger the value of Hð~aÞ, the higher the accuracy degree of the IVIFN ~a is.The relation between the
score function S and the accuracy function H of an IVIFN is similar to the relation between mean and variance in statistics. On
the basis of the score function S and the accuracy function H, in the following, an order relation between IVIFNs is provided
[36].

Definition 1. Let ~a ¼ lL
~a;l

U
~a

� �

; mL
~a; m

U
~a

� �� �

and ~b ¼ lL
~b
;lU

~b

h i

; mL
~b
; mU

~b

h iD E

be any two IVIFNs, then:

� If Sð~aÞ < Sð~bÞ, then ~a is smaller than ~b, denoted by ~a < ~b;
� if Sð~aÞ ¼ Sð~bÞ, then

1. If Hð~aÞ ¼ Hð~bÞ, then ~a and ~b represent the same information, which denotes indifference between ~a and ~b,
defined as ~a ¼ ~b;

2. if Hð~aÞ < Hð~bÞ, then ~a is smaller than ~b, defined as ~a < ~b.

Definition 2. Let ~a ¼ lL
~a;l

U
~a

� �

; mL
~a; m

U
~a

� �� �

and ~b ¼ lL
~b
;lU

~b

h i

; mL
~b
; mU

~b

h iD E

be any two IVIFNs, then we have [36]:

lL
~a 6 lL

~b
; lU

~a 6 lU
~b
; mL~a P mL~b and mU~a P mU~b ) ~a 6 ~b:

Definition 3. Let ~aj (j = 1,2, ... ,n) be a collection of IVIFNs, The geometric aggregation operator of the IVIFNs is computed by
[40]:

IVIFWGAxð~a1; ~a2; . . . ; ~anÞ ¼
Y

n

j¼1

~a
xj

j ¼
Y

n

j¼1

lL
~aj

� 	xj

;
Y

n

j¼1

lU
~aj

� 	xj

" #

; 1�
Y

n

j¼1

1� mL~aj

� 	xj

;1�
Y

n

j¼1

1� mU~aj

� 	xj

" #* +

; ð17Þ

where x ¼ ðx1;x2; . . . ;xnÞ
T is the weight vector of ~aj (j = 1,2, .... ,n), xj 2 [0,1], and

Pn
j¼1xj ¼ 1.

Theorem 1. Let ~a ¼ lL
~a;l

U
~a

� �

; mL
~a; m

U
~a

� �� �

, ~b ¼ lL
~b
;lU

~b

h i

; mL
~b
; mU

~b

h iD E

and ~c ¼ h½lL
~c ;l

U
~c �; ½m

L
~c; m

U
~c �i be three IVIFNs; the following equation

~c ¼ ~a� ~b ¼
lL

~a � lL
~b

1� lL
~b

;
lU

~a � lU
~b

1� lU
~b

" #

;
mL
~a

mL
~b

;
mU
~a

mU
~b

" #* +

; ð18Þ

is valid under the following conditions

~a P
~b; lL

~b
;lU

~b

h i

– ½1;1�; mL~b; m
U
~b

h i

– ½0;0� and lU
~a 	 mU~b � lU

~b
	 mU~a 6 mU~b � mU~a :

Proof. Let us consider an equation of the type:

~c � ~b ¼ ~a; ð19Þ

where the IVIFNs ~a and ~b are provided, and the problem is to obtain the unknown IVIFN ~c which satisfies lL
~c ;l

U
~c

� �

� ½0;1�;
mL
~c ; m

U
~c

� �

� ½0;1� and lU
~c þ mU

~c 6 1. By using Eq. (11), we know that

lL
~c þ lL

~b
� lL

~c 	 l
L
~b
¼ lL

~a;

lU
~c þ lU

~b
� lU

~c 	 lU
~b
¼ lU

~a ;

mL~c 	 m
L
~b
¼ mL~a;

mU~c 	 mU~b ¼ mU~a :

ð20Þ

Then,

lL
~c ¼

lL
~a � lL

~b

1� lL
~b

;

lU
~c ¼

lU
~a � lU

~b

1� lU
~b

;

mL~c ¼
mL
~a

mL
~b

;

mU~c ¼
mU
~a

mU
~b

:

ð21Þ
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Unfortunately, ~c with relations of Eq. (21) may not be an IVIFN. The membership degree of ~c should take values in the inter-

val [0,1], i.e., 0 6
lL
~a
�lL

~b

1�lL
~b

6 1 and 0 6
lU
~a
�lU

~b

1�lU
~b

6 1.

The right-hand sides of both conditions are valid because lL
~a 6 1 and lU

~a 6 1, but the left-hand sides are correct in the

cases that lL
~a P lL

~b
, lU

~a P lU
~b
, lL

~b
– 1 and lU

~b
– 1.

Similarly, non-membership degree of ~c should take values in the interval [0,1], i.e., 0 6
mL
~a

mL
~b

6 1 and 0 6
mU
~a

mU
~b

6 1.

It is obvious that the left-hand sides of these conditions are correct because mL
~a P 0, mL

~b
P 0, mU

~a P 0 and mU
~b
P 0, but the

right-hand sides of them are correct in the cases that mL
~a 6 mL

~b
, mU

~a 6 mU
~b
, mL

~b
– 0 and mU

~b
– 0.

Integrating lL
~a P lL

~b
, lU

~a P lU
~b
, mL

~a 6 mL
~b
and mU

~a 6 mU
~b
, we know that ~a P

~b based on Definition 2. Hence, the above-

mentioned inequalities hold only if ~a P
~b, lL

~b
;lU

~b

h i

– ½1;1� and mL
~b
; mU

~b

h i

– ½0;0�.

Furthermore, ~c is an IVIFN and thus, lU
~c þ mU

~c ¼
lU
~a
�lU

~b

1�lU
~b

þ
mU
~a

mU
~b

¼
lU
~a
	mU

~b
�lU

~b
	mU

~b
þmU

~a
�lU

~b
	mU

~a

mU
~b
�lU

~b
	mU

~b

6 1.

Based on the above-mentioned conditions, we know that lU
~b
< 1 and mU

~b
– 0; hence, mU

~b
� lU

~b
	 mU

~b
> 0.

Then; lU
~a 	 mU~b � lU

~b
	 mU~a 6 mU~b � mU~a

which completes the proof of Theorem 1. h

Theorem 2. Let ~a ¼ lL
~a;l

U
~a

� �

; mL
~a; m

U
~a

� �� �

, ~b ¼ lL
~b
;lU

~b

h i

; mL
~b
; mU

~b

h iD E

and ~d ¼ lL
~d
;lU

~d

h i

; mL
~d
; mU

~d

h iD E

be three IVIFNs; the following

equation

~d ¼ ~a� ~b ¼
lL

~a

lL
~b

;
lU

~a

lU
~b

" #

;
mL
~a � mL

~b

1� mL
~b

;
mU
~a � mU

~b

1� mU
~b

" #* +

ð22Þ

is valid under the following conditions ~a 6 ~b; lL
~b
;lU

~b

h i

– ½0;0�, mL
~b
; mU

~b

h i

– ½1;1� and lU
~a 	 mU

~b
� lU

~b
	 mU

~a P lU
~a � lU

~b
.

Proof. Let us consider an equation of the type:

~d
 ~b ¼ ~a; ð23Þ

where the IVIFNs ~a and ~b are given, and the problem is to find the unknown IVIFN ~d which satisfies
lL

~d
;lU

~d

h i

� ½0;1�; mL
~d
; mU

~d

h i

� ½0;1� and lU
~d
þ mU

~d
6 1. Using Eq. (12), we know that

lL
~d
	 lL

~b
¼ lL

~a;

lU
~d
	 lU

~b
¼ lU

~a ;

mL~d þ mL~b � mL~d 	 m
L
~b
¼ mL~a;

mU~d þ mU~b � mU~d 	 mU~b ¼ mU~a :

ð24Þ

Then,

lL
~d
¼
lL

~a

lL
~b

;

lU
~d
¼
lU

~a

lU
~b

;

mL~d ¼
mL
~a � mL

~b

1� mL
~b

;

mU~d ¼
mU
~a � mU

~b

1� mU
~b

:

ð25Þ

Unfortunately, ~d with relations of Eq. (25) may not be an IVIFN. The membership degree of ~d should take values in the inter-

val [0,1], i.e., 0 6
lL
~a

lL
~b

6 1 and 0 6
lU
~a

lU
~b

6 1.

It is obvious that the left-hand sides of both conditions are valid because lL
~a P 0, lL

~b
P 0, lU

~a P 0 and lU
~b
P 0, but the

right-hand sides are correct in the cases that lL
~a 6 lL

~b
, lU

~a 6 lU
~b
, lL

~b
– 0 and lU

~b
– 0.

Similarly, non-membership degree of ~d should take values in the interval [0,1], i.e., 0 6
mL
~a
�mL

~b

1�mL
~b

6 1 and 0 6
mU
~a
�mU

~b

1�mU
~b

6 1.

The right-hand sides of these conditions are valid because mL
~a 6 1 and mU

~a 6 1, but the left-hand sides are correct in the
cases that mL

~a P mL
~b
, mU

~a P mU
~b
, mL

~b
– 1 and mU

~b
– 1.

Integrating lL
~a 6 lL

~b
, lU

~a 6 lU
~b
, mL

~a P mL
~b
and mU

~a P mU
~b
, we know that ~a 6 ~b based on Definition 2. Hence, the above-

mentioned inequalities hold only if ~a 6 ~b, lL
~b
;lU

~b

h i

– ½0;0� and mL
~b
; mU

~b

h i

– ½1;1�.
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Furthermore, ~d is an IVIFN and thus, lU
~d
þ mU

~d
¼

lU
~a

lU
~b

þ
mU
~a
�mU

~b

1�mU
~b

¼
lU
~a
�lU

~a
	mU

~b
þlU

~b
	mU

~a
�lU

~b
	mU

~b

lU
~b
�lU

~b
	mU

~b

6 1.

Based on the above-mentioned conditions, we know that mU
~b
< 1 and lU

~b
– 0; hence, lU

~b
� lU

~b
	 mU

~b
> 0. Then,

lU
~a 	 mU

~b
� lU

~b
	 mU

~a P lU
~a � lU

~b
which completes the proof of Theorem 2. h

As above-mentioned, ~c and ~d may not be IVIFNs in Theorems 1 and 2, because they may not satisfy the IVIFN conditions,
presented on relation (9). In these states, values of ~a and ~b should be modified so that ~c and ~d will be IVIFNs, if possible.
Otherwise, we can employ the distance operator presented by Park [30] instead of the subtraction operator for ~c. Also, for
~d we can convert ~a and ~b to crisp numbers by the score or accuracy functions (i.e., relations (15) and (16)) when the condi-
tions of the division operator do not satisfy.

3. Proposed novel interval-valued intuitionistic fuzzy MAGDM model

Sets and input parameters:

A: set of alternatives, A = {A1, A2, . . . , Am}
C: set of conflicting attributes, C = {C1, C2, . . . , Cn}
E: set of experts or DMs, E = {E1, E2, . . . , El}
�l: interval value of membership degree of IVIFNs
�m: interval value of non-membership degree of IVIFNs
~x
ðkÞ

ij : IVIF-performance rating of the ith alternative Ai with respect to the jth attribute Cj provided by kth expert
a
ðkÞ

ij : lower bound of �l of performance rating ~x
ðkÞ

ij provided by kth expert
b
ðkÞ

ij : upper bound of �l of performance rating ~x
ðkÞ

ij provided by kth expert
c
ðkÞ

ij : lower bound of �m of performance rating ~x
ðkÞ

ij provided by kth expert
d
ðkÞ

ij : upper bound of �m of performance rating ~x
ðkÞ

ij provided by kth expert
~xij: IVIF-aggregated performance rating
aij: lower bound of �l of aggregated performance rating ~xij
bij: Upper bound of �l of aggregated performance rating ~xij
cij: lower bound of �m of aggregated performance rating ~xij
dij: upper bound of �m of aggregated performance rating ~xij
~nðkÞ: IVIF-relative importance of kth expert
n
ðkÞ
1 : lower bound of �l of relative importance ~nðkÞ provided by kth expert
n
ðkÞ
2 : upper bound of �l of relative importance ~nðkÞ provided by kth expert
n
ðkÞ
3 : lower bound of �m of relative importance ~nðkÞ provided by kth expert
n
ðkÞ
4 : upper bound of �m of relative importance ~nðkÞ provided by kth expert
~W

ðkÞ

j : IVIF-weight of attribute j provided by kth expert
w

ðkÞ

j1 : lower bound of �l of weight ~W
ðkÞ

j

w
ðkÞ

j2 : upper bound of �l of weight ~W
ðkÞ

j

w
ðkÞ

j3 : lower bound of �m of weight ~W
ðkÞ

j

w
ðkÞ

j4 : upper bound of �m of weight ~W
ðkÞ

j
~W j: IVIF-aggregated weight of attribute j

wj1: lower bound of �l of aggregated weight ~W j

wj2: upper bound of �l of aggregated weight ~W j

wj3: lower bound of �m of aggregated weight ~W j

wj4: upper bound of �m of aggregated weight ~W j

~rij: performance rating of ith alternative Ai vs. the jth attribute Cj
~r�j : IVIF-positive-ideal solution of the jth attribute Cj
a�
j : lower bound of �l of positive-ideal solution ~r�j

b
�
j : upper bound of �l of positive-ideal solution ~r�j

c�j : lower bound of �m of positive-ideal solution ~r�j
d
�
j : upper bound of �m of positive-ideal solution ~r�j

~r�j : IVIF-negative-ideal solution of the jth attribute Cj
a�
j : lower bound of �l of negative-ideal solution ~r�j

b
�
j : upper bound of �l of negative-ideal solution ~r�j

c�j : lower bound of �m of negative-ideal solution ~r�j
d
�
j : upper bound of �m of negative-ideal solution ~r�j

~f �ij: IVIF-distance between ~rij and ~r�j
~f�ij : IVIF-distance between ~rij and ~r�j
k; c: weight for the strategy of the majority attributes
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The proposed IVIF-MAGDM model under multiple attributes deals with uncertain and imprecise data and information.
This decision problem takes into account performance values of all candidates vs. multiple conflicting attributes as well
as the weight of attributes. The evaluation values are expressed as linguistic terms and they are convertible to IVIFNs during
the decision process under uncertainty by Tables 1 and 2.

For the MAGDM problem, let E = {E1, E2, . . . , El} be the set of the experts or DMs, A = {A1,A2, . . . ,Am} be a finite set of alter-
natives, and C = {C1, C2, . . . , Cn} be the set of conflicting attributes.

The characteristic of the candidate Ai is represented by an IVIFN as follows:

~Ai ¼ Cj; lL
~Ai
ðCjÞ;lU

~Ai
ðCjÞ

h i

; mL~Ai ðCjÞ; m
U
~Ai
ðCjÞ

h iD E

Cj 2 C
n o

; ð26Þ

where 0 6 lU
~Ai
ðCjÞ þ mU

~Ai
ðCjÞ 6 1; lL

~Ai
ðCjÞ P 0; mL

~Ai
ðCjÞ P 0; j ¼ 1;2; . . . ;n; i ¼ 1;2; . . . ;m:

The IVIFN that is the pair of intervals �lðkÞ
~Ai
ðCjÞ ¼ a

ðkÞ

ij ; b
ðkÞ

ij

h i

; �mðkÞ
~Ai
ðCjÞ ¼ c

ðkÞ

ij ; d
ðkÞ

ij

h i

for Cj 2 C is denoted by

~x
ðkÞ

ij ¼ a
ðkÞ

ij ; b
ðkÞ

ij

h i

; c
ðkÞ

ij ; d
ðkÞ

ij

h iD E

; where a
ðkÞ

ij ; b
ðkÞ

ij

h i

indicates the degree that the candidate Ai satisfies the attribute Cj provided

by the expert or DM Ek (k = 1,2, . . . , l), c
ðkÞ

ij ; d
ðkÞ

ij

h i

indicates the degree that the candidate Ai does not satisfies the attribute

Cj given by the expert Ek.
The rating of each alternative vs. the objective attributes must be transformed to an IVIFN. Hence, first they are normal-

ized into the range of [0,1]. The normalized rating for them can be calculated as follows.
For benefit attributes, we have:

x̂
ðkÞ

ij ¼
x
ðkÞ

ij �min
i

x
ðkÞ

ij

n o

max
i

x
ðkÞ

ij

n o

�min
i

x
ðkÞ

ij

n o ;

and for cost attributes, we have:

x̂
ðkÞ

ij ¼
max

i
x
ðkÞ

ij

n o

� x
ðkÞ

ij

max
i

x
ðkÞ

ij

n o

�min
i

x
ðkÞ

ij

n o :

Then, x̂ðkÞij can be written as an IVIFN ~x
ðkÞ

ij ¼ �lðkÞ
~xij
; �mðkÞ

~xij

D E

¼ x̂
ðkÞ

ij ; x̂
ðkÞ

ij

h i

; 1� x̂
ðkÞ

ij ;1� x̂
ðkÞ

ij

h iD E

. Thus, both subjective and objective

attributes in the proposed model can be simultaneously considered and handled to solve complex decision making
problems.

XðkÞ ¼ ~x
ðkÞ

ij

� 	

m�n
provided by the expert Ek as an IVIF-decision matrix is obtained as the following form:

Table 1

Linguistic terms for the rating of alternatives.

Linguistic terms Interval-valued intuitionistic fuzzy numbers

Very good (VG)/very high (VH) h½0:80;0:90�; ½0:05;0:10�i

Good (G)/high (H) h½0:55; 0:70�; ½0:10;0:20�i

Medium good (MG)/medium high (MH) h½0:45; 0:60�; ½0:15; 0:30�i

Fair (F)/medium (M) h½0:30; 0:50�; ½0:20;0:40�i

Medium bad (MB)/medium low (ML) h½0:25; 0:40�; ½0:35; 0:50�i

Bad (B)/low (L) h½0:10;0:30�; ½0:45;0:60�i

Very bad (VB)/very low (VL) h½0:00; 0:10�; ½0:70; 0:90�i

Table 2

Linguistic terms for the relative importance of the DMs and criteria.

Linguistic terms Interval-valued intuitionistic fuzzy numbers

Very important (VI) h½0:80;0:90�; ½0:05; 0:10�i

Important (I) h½0:60; 0:75�; ½0:10;0:20�i

Medium (M) h½0:30; 0:50�; ½0:25; 0:45�i

Unimportant (UI) h½0:20;0:35�; ½0:45;0:60�i

Very unimportant (VUI) h½0:00; 0:10�; ½0:70;0:90�i
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:

According to above-mentioned descriptions, steps of the proposed novel IVIF-MAGDM model are presented as follows

Step 1: A committee of the experts or DMs (Ek, k = 1,2, . . ., l) is established to determine the best alternative among a set of
potential alternatives (candidates) by considering the conflicting attributes.

Step 2: The relative importance of each DM is determined as a linguistic term and is convertible to an IVIFN

~nðkÞ ¼ �lðkÞ
~n
; �mðkÞ

~n

D E

¼ n
ðkÞ
1 ; n

ðkÞ
2

h i

; n
ðkÞ
3 ; n

ðkÞ
4

h iD E� 	

.

Step 3: Proper subjective and objective attributes are identified for the selection problem.
Step 4: The weight of each selected attribute j by kth DM is subjectively described by a linguistic term and is transformed

into the IVIFN ~W
ðkÞ

j ¼ �lðkÞ
~W j
; �mðkÞ

~W j

D E

¼ w
ðkÞ

j1 ;w
ðkÞ

j2

h i

; w
ðkÞ

j3 ;w
ðkÞ

j4

h iD E� 	

.

Step 5: The aggregated IVIF-weight of each selected attribute based on the interval-valued intuitionistic fuzzy weighted
geometric averaging (IVIFWGA) operator is calculated, IVIFWGAxð ~W1; ~W2; . . . ; ~W lÞ, by:

~W j ¼ �l ~W j
; �m ~W j

D E

¼ wj1;wj2�;
�

wj3;wj4

� �� �

¼
Y

l

k¼1

ðn
ðkÞ
1 :w

ðkÞ

j1 Þ
xk
;
Y

l

k¼1

ðn
ðkÞ
2 :w

ðkÞ

j2 Þ
xk

" #

; 1�
Y

l

k¼1

1� n
ðkÞ
3 �w

ðkÞ

j3 þ n
ðkÞ
3 :w

ðkÞ

j3

� 	xk

;1�
Y

l

k¼1

1� n
ðkÞ
4 �w

ðkÞ

j4 þ n
ðkÞ
4 :w

ðkÞ

j4

� 	xk

" #* +

ð27Þ

where x ¼ x1;x2; . . . ;xlð ÞT ¼ 1
l
; 1
l
; . . . ; 1

l


 �T
is the weight vector of ~W j (j = 1,2, .... ,n), xk e [0,1], and

Pl
k¼1xk ¼ 1.

Step 6: The performance rating of each potential alternative vs. the selected attributes is evaluated by each DM (~xðkÞij ).
Step 7: The IVIF-performance matrix is formed for each DM (XðkÞ).
Step 8: The aggregated IVIF-decision matrix is constructed based on opinions of the DMs and the IVIFWGA operator

IVIFWGAx ~x
ð1Þ
ij ; ~x

ð2Þ
ij ; . . . ; ~x

ðlÞ

ij

� 	� 	

by:

~xij ¼ �l~xij ; �m~xij

D E

¼ h½aij; bij�; ½cij;dij�i

¼
Y

l

k¼1

n
ðkÞ
1 :a

ðkÞ

ij

� 	xk

;
Y

l

k¼1

n
ðkÞ
2 :b

ðkÞ

ij

� 	xk

" #

; 1�
Y

l

k¼1

1� n
ðkÞ
3 � c

ðkÞ

ij þ n
ðkÞ
3 :c

ðkÞ

ij

� 	xk

;1�
Y

l

k¼1

1� n
ðkÞ
4 � d

ðkÞ

ij þ n
ðkÞ
4 :d

ðkÞ

ij

� 	xk

" #* +

;

ð28Þ

where x ¼ x1;x2; . . . ;xlð ÞT ¼ 1
l
; 1
l
; . . . ; 1

l


 �T
is the weight vector of ~xðkÞij (i = 1,2, . . . ,m; j = 1,2, ... ,n; k = 1,2, . . . , l), xk e [0,1],

and
Pl

k¼1xk ¼ 1.
Step 9: The weighted aggregated IVIF-decision matrix is determined by considering the different importance of attributes

as follows:

R ¼ ½~rij�m�n; ð29Þ

where,

~rij ¼ ~W j 
 ~xij ¼ wj1:aij;wj2:bij

� �

; wj3 þ cij �wj3:cij;wj4 þ dij �wj4:dij

� �� �

; ð30Þ

Step 10: IVIF-positive-ideal and IVIF-negative-ideal solutions, defined as A⁄ and A�, are determined by:

A� ¼ f~r�1; . . . ;~r
�
ng

T
¼ max

i
~rij jj 2 XB

� 

; min
i

~rij jj 2 XC

� 

i ¼ 1;2; . . . ;mj

� �T

; ð31Þ

A� ¼ ~r�1 ; . . . ;~r
�
n

� �T
¼ min

i
~rij jj 2 XB

� 

; max
i

~rij jj 2 XC

� 

ji ¼ 1;2; . . . ;m

� �T

; ð32Þ

whereXB is associated with benefit attributes (i.e., the larger Ai, the greater preference), andXC is associated with cost attri-

butes (i.e., the smaller Ai, the greater preference). ~r�j ¼ a�j ; b
�
j

h i

; c�j ; d
�
j

h iD E

and ~r�j ¼ a�
j ; b

�
j

h i

; c�j ; d
�
j

h iD E

, j = 1,2, . . . ,n.
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Step 11: IVIF-positive-ideal separation matrix (F⁄) is defined as follows:

F� ¼ ~f �ij

h i

¼

~r�1 � ~r11 ~r�2 � ~r12 	 	 	 ~r�n � ~r1n
~r�1 � ~r21 ~r�2 � ~r22 	 	 	 ~r�n � ~r2n

.

.

.
.
.
.

.

.

.
.
.
.

~r�1 � ~rm1 ~r�2 � ~rm2 	 	 	 ~r�n � ~rmn

2

6

6

6

6

4

3

7

7

7

7

5

ð33Þ

for benefit attributes, and

F� ¼ ~f �ij

h i

¼

~r11 � ~r�1 ~r12 � ~r�2 	 	 	 ~r1n � ~r�n
~r21 � ~r�1 ~r22 � ~r�2 	 	 	 ~r2n � ~r�n

.

.

.
.
.
.

.

.

.
.
.
.

~rm1 � ~r�1 ~rm2 � ~r�2 	 	 	 ~rmn � ~r�n

2

6

6

6

6

4

3

7

7

7

7

5

ð34Þ

for cost attributes.
Also, IVIF-negative-ideal separation matrix (F�) is defined as follows:

F� ¼ ~f�ij

h i

¼

~r11 � ~r�1 ~r12 � ~r�2 	 	 	 ~r1n � ~r�n
~r21 � ~r�1 ~r22 � ~r�2 	 	 	 ~r2n � ~r�n

.

.

.
.
.
.

.

.

.
.
.
.

~rm1 � ~r�1 ~rm2 � ~r�2 	 	 	 ~rmn � ~r�n

2

6

6

6

6

4

3

7

7

7

7

5

ð35Þ

for benefit attributes, and

F� ¼ ~f�ij

h i

¼

~r�1 � ~r11 ~r�2 � ~r12 	 	 	 ~r�n � ~r1n
~r�1 � ~r21 ~r�2 � ~r22 	 	 	 ~r�n � ~r2n

.

.

.
.
.
.

.

.

.
.
.
.

~r�1 � ~rm1 ~r�2 � ~rm2 	 	 	 ~r�n � ~rmn

2

6

6

6

6

4

3

7

7

7

7

5

ð36Þ

for cost attributes.
Step 12: ~Ri, ~Ii, ~fi and ~ni values are computed for i = 1, 2, . . . ,m by Eqs. (37)–(40) as follows:

~Ri ¼
X

n

j¼1

~f �ij; ð37Þ

~Ii ¼ max
j

~f �ij; ð38Þ

~fi ¼
X

n

j¼1

~f�ij ; ð39Þ

~ni ¼ max
j

~f�ij : ð40Þ

Ri, Ii, fi and ni values are calculated based on the accuracy function by Eqs. (41)–(48) as follows:

Ri ¼ 1�
Y

n

j¼1

1�
a�j �wj1 	 aij

1�wj1 	 aij

� 

þ
Y

n

j¼1

1�
b
�
j �wj2 	 bij

1�wj2 	 bij

 !" #

þ
1

2

Y

n

j¼1

c�j
wj3 þ cij �wj3 	 cij

� 

þ
Y

n

j¼1

d
�
j

wj4 þ dij �wj4 	 dij

 !" #

; ð41Þ

Ii ¼ max
j

a�j �wj1 	 aij

1�wj1 	 aij
þ
b
�
j �wj2 	 bij

1�wj2 	 bij

� 1þ
1

2

c�j
wj3 þ cij �wj3 	 cij

þ
d
�
j

wj4 þ dij �wj4 	 dij

 ! !

; ð42Þ

fi ¼ 1�
Y

n

j¼1

1�
wj1 	 aij � a�j

1� a�j

 !

þ
Y

n

j¼1

1�
wj2 	 bij � b

�
j

1� b
�
j

 !" #

þ
1

2

Y

n

j¼1

wj3 þ cij �wj3 	 cij
c�j

 !

þ
Y

n

j¼1

wj4 þ dij �wj4 	 dij

d
�
j

 !" #

; ð43Þ
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ni ¼ max
j

wj1 	 aij � a�
j

1� a�j
þ
wj2 	 bij � b

�
j

1� b
�
j

� 1þ
1

2

wj3 þ cij �wj3 	 cij
c�j

þ
wj4 þ dij �wj4 	 dij

d
�
j

 ! !

ð44Þ

for benefit attributes, and

Ri ¼ 1�
Y

n

j¼1

1�
wj1 	 aij � a�j

1� a�j

 !

þ
Y

n

j¼1

1�
wj2 	 bij � b

�
j

1� b
�
j

 !" #

þ
1

2

Y

n

j¼1

wj3 þ cij �wj3 	 cij
c�j

 !

þ
Y

n

j¼1

wj4 þ dij �wj4 	 dij

d
�
j

 !" #

; ð45Þ

Ii ¼ max
j

wj1 	 aij � a�j
1� a�j

þ
wj2 	 bij � b

�
j

1� b
�
j

� 1þ
1

2

wj3 þ cij �wj3 	 cij
c�j

þ
wj4 þ dij �wj4 	 dij

d
�
j

 ! !

; ð46Þ

fi ¼ 1�
Y

n

j¼1

1�
a�j �wj1 	 aij

1�wj1 	 aij

� 

þ
Y

n

j¼1

1�
b
�
j �wj2 	 bij

1�wj2 	 bij

� 

" #

þ
1

2

Y

n

j¼1

c�j
wj3 þ cij �wj3 	 cij

� 

þ
Y

n

j¼1

d
�
j

wj4 þ dij �wj4 	 dij

� 

" #

; ð47Þ

ni ¼ max
j

a�j �wj1 	 aij

1�wj1 	 aij
þ
b
�
j �wj2 	 bij

1�wj2 	 bij

� 1þ
1

2

c�j
wj3 þ cij �wj3 	 cij

þ
d
�
j

wj4 þ dij �wj4 	 dij

� � 

ð48Þ

for cost attributes.
Step 13: The values of indices si and gi are calculated. Two indexes are obtained by [33]:

si ¼

Ii�I
þ

I
��I

þ if R
� ¼ R

þ

Ri�R
þ

R
��R

þ if I
� ¼ I

þ

Ri�R
þ

R
��R

þ

� 	

kþ Ii�I
þ

I
��I

þ

� 	

ð1� kÞ Otherwise

8

>

>

>

<

>

>

>

:

ð49Þ

and

gi ¼

ni�n�

nþ�n�
if fþ ¼ f�;

fi�f�

fþ�f�
if nþ ¼ n�;

ni�n�

nþ�n�

� 	

cþ fi�f�

fþ�f�

� 	

ð1� cÞ otherwise;

8

>

>

>

<

>

>

>

:

ð50Þ

where
R

þ ¼ miniRi

R
� ¼ maxiRi

�

,
I

þ ¼ miniIi

I
� ¼ maxiIi

�

,
fþ ¼ maxifi
f� ¼ minifi

�

,
nþ ¼ maxini
n� ¼ minini

�

, k and c are regarded as a weight for the strategy of the

majority attributes, whereas ð1� kÞ and (1 � c) are the weights of the individual regret. The values of k and c fall within the
range of 0–1, and these strategies can be compromised by k ¼ 0:5 and c = 0.5.
Step 14: Collective index (CI) is calculated by:

CIi ¼ si þ
1

giðBÞ

þ /i0 ; ð51Þ

where the second term refers to all i for which gi > 0 while /i0 refers to all i0 for which gi = 0 and /i0 ¼ mingiðBÞ i

� 	minjwj

, where

minj wj ¼ minj wj1 þwj2 � 1þ
wj3þwj4

2

� 	

.

Step 15: The alternatives are ranked according to the preference order. The best alternative can be obtained by the prefer-
ence rank order of si and gi. The minimum value of the CI demonstrates the better performance for the alternative i.

4. Application of the proposed model for reservoir flood control operation

In this section, the proposed IVIF-MAGDM model is applied to evaluate the operation alternatives of a reservoir by an
application example from the recent literature [41]. Generally speaking, the reservoir flood control operation is complex
in nature, dealing with a variety of qualitative attributes arising from environmental, social and even political concerns.
In addition, by considering imprecision in information and subjectivity in human opinions, the decision making for the res-
ervoir flood control operation problems can be taken within the frame of the MAGDM under fuzzy environments to create a
flexible tool for the DMs in this engineering application. Flood control aims to decrease the flood peak discharge during the
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flood season and at the same time keep the water level of the reservoir as low as possible at the end of this flood. Hence, this
paper takes the following several attributes into consideration for the evaluation [41]:

C1 – flood peak discharge at downstream
C2 – the less difference between the design flood level and the highest water level during the operation
C3 – sediment load in reservoir area
C4 – the risk of flooding in the downstream protected regions
C5 – the risk of failure of the dam and its structures

There are five feasible operation alternatives A1, A2, A3, A4 and A5 for a major flood after preliminary screening. In the fol-
lowing, the presented IVIF-MAGDM model is employed to evaluate and select the best alternative. The values of three quan-
titative attributes are calculated for each of the operation alternatives. These values are shown in the form of IVIFNs to take
account of the uncertainties in the modeling process. For each qualitative attribute, each expert or DM applies the linguistic
values to evaluate each alternative as given in Table 1. The weight of five selected attributes and the DMs are described by
using the following linguistic terms: very unimportant (VUI), unimportant (UI), medium (M), important (I) and very impor-
tant (VI), which are defined in Table 2.

A committee of three professional experts or DMs (E1, E2 and E3) is formed to conduct the evaluation and to select the
most suitable operation alternatives (Step 1). Due to their different backgrounds and experience, each expert is assigned
a weight based on their importance in the engineering application to reservoir flood control operation. These weights are
provided by the top manager at the beginning of the group decision making process, which are represented as IVIFNs as gi-
ven in Table 3 (Step 2).

The weight of each selected attribute by three DMs is subjectively described by linguistic terms and is transformed into
the IVIFNs (Step 4). The IVIF-weight of each selected attribute is aggregated based on the IVIFWGA operator
(IVIFWGAxð ~W1; ~W2; . . . ; ~W lÞ) by Eq. (27) as provided in Table 4 (Step 5).

The fuzzy ratings of five operation alternatives by the linguistic variables, and their respective IVIFNs in Table 1 are eval-
uated by the DMs with respect to qualitative attributes. Then, the IVIF-performance matrix is formed for each of three DMs
as illustrated in Table 5 (Steps 6 and 7). Aggregated IVIF-decision matrix is constructed by Eq. (28). The obtained results are
provided in Table 6 based on the IVIFWGA operator (IVIFWGAx ~x

ð1Þ
ij ; ~x

ð2Þ
ij ; . . . ; ~x

ðlÞ

ij

� 	

) (Step 8).
After calculating the aggregated IVIF-decision matrix and the weights of five selected attributes, the weighted IVIF-deci-

sion matrix is constructed and given in Table 7 (Step 9). According to the concept of IVIFNs, the IVIF-positive-ideal and IVIF-
negative-ideal solutions are computed according to the benefit attribute (i.e., C2) and the cost attributes (i.e., C1, C3, C4 and C5)
in this application example (Step 10).

IVIF-positive-ideal separation matrix ð~F�Þ and IVIF-negative-ideal separation matrix ð~F�Þ are computed by Eqs. (33)–(36)
as follows (Step 11):

F�
i1 ¼

½0:3074;0:5012�; ½0:3816;0:4694�h i

½0:1844;0:3007�; ½0:5788;0:6816�h i

½0:0000;0:0000�; ½1:0000;1:0000�h i

½0:1229;0:2005�; ½0:6415;0:7878�h i

½0:3688;0:6014�; ½0:2830;0:3633�h i

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; F�
i2 ¼

½0:0341;0:0872�; ½0:8508;0:8967�h i

½0:0861;0:1822�; ½0:6969;0:7882�h i

½0:1053;0:2110�; ½0:6496; 0:7561�h i

½0:1327; 0:2594�; ½0:5609;0:7031�h i

½0:0000;0:0000�; ½1:0000;1:0000�h i;

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Table 3

Relative importance of the DMs.

E1 E2 E3

Linguistic terms Medium Important Very important

Interval-valued intuitionistic fuzzy number h½0:30;0:50�; ½0:25;0:45�iÞ h½0:60;0:75�; ½0:10;0:20�i h½0:80;0:90�; ½0:05;0:10�i

Table 4

Interval-valued intuitionistic fuzzy weights of the criteria and their aggregations.

C1 C2 C3 C4 C5

E1 VI VI M M M

E2 VI I I VI I

E3 I M M I I

Aggregated interval-valued weight h[0.7268,0.8469],

[0.0670,0.1347]i

h[0.5241,0.6962],

[0.1377,0.2657]i

h[0.3780,0.5724],

[0.2030,0.3768]i

h([0.5241,0.6962],

[0.1377,0.2657]i

h[0.4762,0.6552],

[0.1531,0.2939]i
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F�
i3 ¼

½0:0000;0:0000�; ½1:0000;1:0000�h i

½0:0784;0:1563�; ½0:7700;0:8181�h i

½0:0523;0:1042�; ½0:8209;0:8787�h i

½0:1307;0:2605�; ½0:6173;0:6968�h i

½0:0261;0:0521�; ½0:8724; 0:9394�h i

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; F�
i4 ¼

½0:0943;0:1649�; ½0:6076;0:7725�h i

½0:1155;0:1993�; ½0:5701;0:7323�h i

½0:1080; 0:1830�; ½0:5885;0:7514�h i

½0:0000;0:0000�; ½1:0000;1:0000�h i

½0:1712;0:2902�; ½0:4926;0:6459�h i;

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Table 5

Ratings of operation alternatives vs. the selected criteria.

Criteria Operation alternatives Experts

E1 E2 E3

A1 M M MH

A2 MH H M

C4 A3 MH M MH

A4 L VL ML

A5 VH H H

A1 M M MH

A2 MH H MH

C5 A3 MH ML M

A4 M M ML

A5 H H MH

Table 6

Aggregated interval-valued intuitionistic fuzzy decision matrix.

Alter. Criteria

C1 C2 C3 C4 C5

A1 h[0.8636,0.9545],

[0.0250,0.0455]i

h[0.9306,0.9583],

[0.0280,0.0417]i

h[0.6316,0.7368],

[0.1579,0.2632]i

h[0.1800,0.3699],

[0.2960,0.5362]i

h[0.1800,0.3699],

[0.2960,0.5362]i

A2 h[0.7727,0.8636],

[0.0750,0.1364]i

h[0.8750,0.9028],

[0.0694,0.0972]i

h[0.7895,0.8947],

[0.0630,0.1053]i

h[0.2203,0.4138],

[0.2679,0.4895]i

h[0.2522,0.4398],

[0.2529,0.4626]i

A3 h[0.6364,0.7273],

[0.1818,0.2727]i

h[0.8528,0.8833],

[0.0861,0.1167]i

h[0.7368,0.8421],

[0.0840,0.1579]i

h[0.2060,0.3931],

[0.2817,0.5117]i

h[0.1694,0.3434],

[0.3431,0.5635]i

A4 h[0.7273,0.8182],

[0.0909,0.1818]i

h[0.8194,0.8472],

[0.1250,0.1528]i

h[0.8947,1.0000],

[0.0000,0.0000]i

h[0.0000,0.1594],

[0.5903,0.8007]i

h[0.1480,0.3232],

[0.3563,0.5854]i

A5 h[0.9091,1.0000],

[0.0000,0.0000]i

h[0.9639,1.0000],

[0.0000,0.0000]i

h[0.6842,0.7895],

[0.1053,0.2105]i

h[0.3266,0.5300],

[0.2098,0.3890]i

h[0.2696,0.4630],

[0.2385,0.4381]i

Table 7

Weighted aggregated interval-valued intuitionistic fuzzy decision matrix.

Alter. Criteria

C1 C2 C3 C4 C5

A1 h[0.6277,0.8084],

[0.0903,0.1740]i

h[0.4877,0.6672],

[0.1618,0.2963]i

h[0.2387,0.4217],

[0.3288,0.5408]i

h[0.0943,0.2576],

[0.3930,0.6594]i

h[0.0857,0.2424],

[0.4038,0.6725]i

A2 h[0.5617,0.7314],

[0.1369,0.2527]i

h[0.4586,0.6285],

[0.1975,0.3371]i

h[0.2984,0.5121],

[0.2532,0.4424]i

h[0.1155,0.2881],

[0.3687,0.6251]i

h[0.1201,0.2881],

[0.3677,0.6205]i

A3 h[0.4625,0.6160],

[0.2366,0.3707]i

h[0.4470,0.6150],

[0.2119,0.3513]i

h[0.2785,0.4820],

[0.2700,0.4752]i

h[0.1080,0.2737],

[0.3806,0.6414]i

h[0.0807,0.2250],

[0.4437,0.6918]i

A4 h[0.5286,0.6929],

[0.1518,0.2920]i

h[0.4295,0.5899],

[0.2455,0.3778]i

h[0.3382,0.5724],

[0.2030,0.3768]i

h[0.0000,0.1110],

[0.6467,0.8536]i

h[0.0705,0.2117],

[0.4548,0.7072]i

A5 h[0.6608,0.8469],

[0.0670,0.1347]i

h[0.5052,0.6962],

[0.1377,0.2657]i

h[0.2586,0.4519],

[0.2869,0.5080]i

h[0.1712,0.3690],

[0.3186,0.5513]i

h[0.1284,0.3033],

[0.3551,0.6033]i

Positive ideal solutions (A⁄) h[0.6608,0.8469],

[0.0670,0.1347]i

h[0.5052,0.6962],

[0.1377,0.2657]i

h[0.3382,0.5724],

[0.2030,0.3768]i

h[0.1712,0.3690],

[0.3186,0.5513]i

h[0.1284,0.3033],

[0.3551,0.6033]i

Negative ideal solutions (A�) h[0.4625,0.6160],

[0.2366,0.3707]i

h[0.4295,0.5899],

[0.2455,0.3778]i

h[0.2387,0.4217],

[0.3288,0.5408]i

h[0.0000,0.1110],

[0.6467,0.8536]i

h[0.0705,0.2117],

[0.4548,0.7072]i
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F�
i5 ¼

½0:0164;0:0389�; ½0:8879;0:9509�h i

½0:0534;0:0969�; ½0:8075;0:8774�h i

½0:0110;0:0168�; ½0:9755;0:9782�h i

½0:0000;0:0000�; ½1:0000;1:0000�h i

½0:0623; 0:1162�; ½0:7808;0:8530�h i

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

and

F�
i1 ¼

½0:0887;0:2010�; ½0:7417;0:7739�h i

½0:2261;0:4300�; ½0:4890;0:5329�h i

½0:3688;0:6014�; ½0:2830;0:3633�h i

½0:2804; 0:5015�; ½0:4412;0:4612�h i

½0:0000;0:0000�; ½1:0000;1:0000�h i

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; F�
i2 ¼

½0:1021;0:1886�; ½0:6592;0:7841�h i

½0:0510; 0:0943�; ½0:8048; 0:8920�h i

½0:0306; 0:0613�; ½0:8634;0:9298�h i

½0:0000;0:0000�; ½1:0000;1:0000�h i

½0:1327; 0:2594�; ½0:5609;0:7031�h i;

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

F�
i3 ¼

½0:1307;0:2605�; ½0:6173;0:6968�h i

½0:0567;0:1235�; ½0:8017;0:8517�h i

½0:0827; 0:1745�; ½0:7520;0:7930�h i

½0:0000;0:0000�; ½1:0000;1:0000�h i

½0:1073; 0:2198�; ½0:7076;0:7418�h i

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; F�
i4 ¼

½0:0849;0:1501�; ½0:8107;0:8361�h i

½0:0630;0:1136�; ½0:8641;0:8820�h i

½0:0709; 0:1312�; ½0:8371;0:8595�h i

½0:1712; 0:2902�; ½0:4926;0:6459�h i

½0:0000;0:0000�; ½1:0000;1:0000�h i;

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

F�
i5 ¼

½0:0467;0:0804�; ½0:8794;0:8970�h i

½0:0094;0:0213�; ½0:9669;0:9722�h i

½0:0519; 0:1011�; ½0:8004;0:8720�h i

½0:0623;0:1162�; ½0:7808;0:8530�h i

½0:0000;0:0000�; ½1:0000;1:0000�h i

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

The values of the Ri, Ii, fi, ni are then computed using Eqs. (37)–(48) (Step 12). Consequently, the values of indexes si and
gi are obtained using Eqs. (49) and (50), and the weight values of k and c are 0.5 (Step 13). Finally, the CI of all operation
alternatives is calculated by using Eq. (51) and is given in Table 8 (Step 14). For instance, for the first operation alternative
(A1) we have:

R1 ¼ 1� ½ð0:6926� 0:9659� 1:0000� 0:9057� 0:9836Þ þ ð0:4988� 0:9128� 1:0000� 0:8351� 0:9611Þ�

þ
1

2
½ð0:3816� 0:8505� 1:0000� 0:6076� 0:8879Þ þ ð0:4694� 0:8967� 1:0000� 0:7725� 0:9509Þ�

¼ 1� ð0:5960þ 0:3655Þ þ
1

2
ð0:1752þ 0:3092Þ ¼ 0:2807;

I1 ¼ max

0:3074þ 0:5012� 1þ 1
2
ð0:3816þ 0:4694Þ


 �

; 0:0341þ 0:0872� 1þ 1
2
ð0:8508þ 0:8967Þ


 �

;

0:0000þ 0:0000� 1þ 1
2
ð1:0000þ 1:0000Þ


 �

; 0:0943þ 0:1649� 1þ 1
2
ð0:6076þ 0:7725Þ


 �

;

0:0164þ 0:0389� 1þ 1
2
ð0:8879þ 0:9509Þ


 �

0

B

@

1

C

A

¼ maxð0:2341;�0:0050;0:0000;�0:0507;�0:0254Þ ¼ 0:2341;

f1 ¼ 1� ½ð0:9113� 0:8979� 0:8693� 0:9151� 0:9533Þ þ ð0:7990� 0:8114� 0:7395� 0:8499� 0:9196Þ�

þ
1

2
½ð0:7417� 0:6592� 0:6173� 0:8107� 0:8794Þ þ ð0:7739� 0:7841� 0:6968� 0:8361� 0:8970Þ�

¼ 1� ð0:6206þ 0:3747Þ þ
1

2
ð0:2152þ 0:3171Þ ¼ 0:2709;

Table 8

Indices values and CI by the proposed IVIF-MAGDM model.

Operation alternatives Ri Ii fi ni Indexes values CI Final ranking

si gi

A1 0.2807 0.2341 0.2709 0.0583 0.6803 0.2699 4.3853 5

A2 0.2886 0.1153 0.2699 0.1671 0.4752 0.4936 2.5011 4

A3 0.0815 0.0192 0.4263 0.2934 0.0000 1.0000 1.0000 1

A4 0.2048 0.0482 0.3399 0.2330 0.2315 0.7396 1.5836 2

A5 0.4268 0.2934 0.1072 0.0518 1.0000 0.0000 1.7300 3

3508 H. Hashemi et al. / Applied Mathematical Modelling 38 (2014) 3495–3511



n1 ¼ max

0:0887þ 0:2010� 1þ 1
2
ð0:7417þ 0:7739Þ


 �

; 0:1021þ 0:1886� 1þ 1
2
ð0:6592þ 0:7841Þ


 �

;

0:1307þ 0:2605� 1þ 1
2
ð0:6173þ 0:6968Þ


 �

; 0:0849þ 0:1501� 1þ 1
2
ð0:8107þ 0:8361Þ


 �

;

0:0467þ 0:0804� 1þ 1
2 ð0:8794þ 0:8970Þ


 �

0

B

@

1

C

A

¼ maxð0:0475;0:0123;0:0482;0:0583;0:0153Þ ¼ 0:0583;

s1 ¼ 0:5
0:2807� 0:0815

0:4268� 0:0815

� 

þ 0:5
0:2341� 0:0192

0:2934� 0:0192

� 

¼ 0:5ð0:5769þ 0:7837Þ ¼ 0:6803;

and

g1 ¼ 0:5
0:2709� 0:1072

0:4263� 0:1072

� 

þ 0:5
0:0583� 0:0518

0:2934� 0:0518

� 

¼ 0:5ð0:5130þ 0:0269Þ ¼ 0:2699:

Thus, CI1 ¼ s1 þ 1
g1

¼ 0:6803þ 1
0:2699 ¼ 4:3853.

According to Table 8, the ranking order of five potential alternatives is A3, A4, A5, A2 and A1 for the reservoir flood control
operation problem. Hence, the best operation alternative is the third alternative (Step 15).

5. Discussion

This section provides the sensitivity analysis on different weights of the majority attributes (i.e., k and c) in terms of CI
values in the proposed IVIF-MAGDMmodel as given in Table 9. The computational results in this table reflect the perception
that changes in weights of attributes may impact on the outcome of the evaluation somewhat. It is clear that most alterna-
tives keep similar relative rankings vs. different weights of the majority attributes.

The proposed IVIF-MAGDM model based on the compromise ratio method can provide appropriate solutions (i.e., differ-
ent order ranking) by considering different value of k and c depending on specific applications in the reservoir flood control
operation. An effective selection procedure is essential to enhance the decision quality for the experts or DMs. In this paper,
the group decision making process is investigated and a multi-attributes framework is introduced for ranking and selecting
the best operation alterative. The computational results demonstrate that the proposed model takes into account the
requirements as well as the weights of attributes and assesses the alternatives according to these requirements for the
engineering application under the IVIF environment. The model assesses and selects the alternatives in terms of the ideal
reference points by a group of experts; consequently, the alternatives are ranked in reference to their performance ratings
against each other. Thus, the proposed IVIF-MAGDM based on the compromise ratio method is a suitable approach within
the multi-attributes analysis for the real-life situations.

Table 9

Different values of k and c and preference order ranking by the proposed IVIF-MAGDM model.

k and c Values Alternatives CI Preference order ranking

k = 0 and c = 0 A1 2.7332 5

A2 2.3115 4

A3 1.0000 1

A4 1.4772 2

A5 1.8506 3

A = 0.2 and c = 0.2 A1 3.1478 5

A2 2.3868 4

A3 1.0000 1

A4 1.5197 2

A5 1.8099 3

A = 0.5 and c = 0.5 A1 4.3853 5

A2 2.5011 4

A3 1.0000 1

A4 1.5836 2

A5 1.7300 3

A = 0.8 and c = 0.8 A1 8.6760 5

A2 2.6169 4

A3 1.0000 1

A4 1.6477 3

A5 1.6057 2

A = 1 and c = 1 A1 37.7477 5

A2 2.6951 4

A3 1.0000 1

A4 1.6905 3

A5 1.4195 2
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Following are the main important aspects of the proposed IVIF-MAGDM model based on the compromise ratio method
against the identified literature: (1) a modern fuzzy set in an IVIF-form for the compromise ratio approach in a multi-attri-
butes framework is taken into consideration to demonstrate more flexibility and better representation uncertainties than
traditional fuzzy sets for complex decision problems; (2) a new IVIF-relative closeness based on two IVIF-indices and the
score and accuracy functions is introduced that effectively considers the relative distance of potential alternatives from
the IVIF-positive-ideal and IVIF-negative-ideal solutions; and (3) two operations on IVIFSs, namely subtraction and division,
are developed according to the deconvolution for equations by the addition and multiplication operations.

6. Concluding remarks

This paper presented a novel multi-attribute group decision making (MAGDM) approach in an interval-valued intuition-
istic fuzzy (IVIF) environment. Two new operations for interval-valued intuitionistic fuzzy sets were developed by taken the
operational laws of interval-valued intuitionistic fuzzy numbers (IVIFN) into consideration. The proposed IVIF-MAGDM
model was based on the concept of the compromise ratio method and modern fuzzy sets under the group decision making
process. Experts or decision makers described linguistic terms to evaluate the importance of the selected attributes and to
assess the each alternative vs. each attribute. These linguistic terms were converted into IVIFNs and IVIF-decision matrix was
formed. The interval-valued intuitionistic fuzzy weighted geometric averaging (IVIFWGA) operator has been utilized to
aggregate judgments of the experts. After IVIF-positive-ideal and IVIF-negative-ideal points were defined, the IVIF-relative
distance of each alternative from these points was calculated by constructing the IVIF-positive-ideal separation and IVIF-
negative-ideal separation matrices. Finally, an extended collective index in the IVIF environment has been presented based
on the score and accuracy functions of two IVIF-indices to simultaneously take into account not only the shortest distance of
each candidate from the positive-ideal point but also the farthest distance from the negative-ideal point. The presented mod-
el also avoided the difficulties from the extension of the traditional compromise solution methods in the IVIF-environment.
An application example from the recent literature for the engineering application to reservoir flood control operation was
presented to exemplify the proposed IVIF-MAGDM model in detail. The underlying concepts employed in this paper were
intelligible to the group decision making process under uncertainty. The needed computations are straightforward and
easy-to-use in real-life applications. Also, it assists managers in making critical decisions during the selection of the best
alternatives for solving complex decision making problems. For future research, extending other MAGDM methods, such
as SAW, PROMETHEE and ELECTRE, is recommended under uncertainty. In addition, the data consistency in the experts’
information can be regarded through the group decision making process under the IVIF-environment.
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