Circuit-Level Implementation of Quantum-Dot VCSEL Including Thermal Effects

M. Shekarpour*1, K. Saghafi2, M. Jalali3

School of Engineering, Shahed University. Tehran, Iran

*1m.shekarpour@shehed.ac.ir; 2saghafi@shahed.ac.ir; 3mjalali@shahed.ac.ir

Abstract-In this paper, for the first time, we present a circuit model of quantum dot InAs-GaAs VCSEL based on the standard rate equations which includes thermal effects. The model is able to predict static and dynamic behaviours such as LI curves for a range of ambient temperatures and transient response. Modulation response for different threshold current are also investigated. The simulation results reveal a good agreement with experimental data reported in literatures. The model is compatible with circuit analysis programs.

Keywords- circuit model, quantum dot (QD), vertical cavity surface emitting laser (VCSEL), thermal effect.

I. INTRODUCTION

VCSELs in the recent years have attracted many attentions due to their advantages such as, low threshold current, high modulation speed and single-mode operation. As a result, their application are expanded to optical signal processing, optical interconnects, and optical communication systems [1]. In addition, the promising quantum dot structure can yield high thermal stability, improved dynamic characteristics and higher material gain[2]. However, a main drawback of the VCSEL is still strong thermal dependent behaviour because of small cavity, i.e. poor heat dissipation, and the large resistance[3]. Consequently, VCSEL models must account for thermal effects. Numerical models are mostly accurate but very complicated and heavy to calculate. Circuit models, on the other hand, are less accurate and highly suitable for simultaneous analysis of optoelectronic systems where include electronic circuit and photonic component.

Some of researches consider thermal effects based on one-level rate equations, which cannot adequately show the effects of high frequency modulation[4]-[8]. Others that utilize multi-level rate equations are usually unable to show the thermal effects[9],[10]. In this paper we describe the circuit-level modelling of the QD-VCSEL for the first time which tries to include thermal effects and resulted rollover phenomenon based on multi-level rate equation.

II. RATE EQUATION

The schematic of energy band diagram of the InAs–GaAs QD-VCSEL in active region is shown in Fig. 1. The rate equations are given in (1)-(6) and include three energy level, which can provide a better description of laser performances [11]-[13]. In this equations, \(N_B\), \(N_W\), \(N_2\), \(N_1\), \(N_0\) are the carrier number at the barrier region, wetting layer, second exited state, first excited state, and ground state respectively, \(I\) is the injected current and \(S\) is photon number. These equations also include carrier transport, capture, relaxation and escape processes in cladding layer, quantum well (QW) or wetting layer (WL) and QDs layers[11].
The total carrier transport time from cladding layer into QW or WL is $t_{bw} = t_r + t_c$, where $t_r = L_s^2/2D_n,p$ (L_s is the distance from the doped cladding layer to the QW, D_n,p are diffusion coefficients of electrons and holes, respectively, defined by $D_{n,p} = (k_B T/q)\mu_{n,p}$) and t_c is 0.3–0.5 ps for typical QW lasers [14],[15]. The thermionic emission time in the QW or WL is [15]

$$t_{eij} = \frac{1}{(R_{ij} \exp(-E_{ij}/k_B T))}$$

where R_{ij} is Carrier relaxation rate in QD can be expressed as $R_{i,j}(i = j) = A_{i,j} + C_{i,j}N_w$, where $A_{i,j}$ and $C_{i,j}$ are the phonon-assisted relaxation rate and Auger relaxation coefficient between ith and jth level respectively and E_{ij} is Energy band value between ith and jth level(i, j = 0, 1, 2). N_w is the carrier density in the wetting layer[16]. t_{ri} is the carrier recombination lifetime in the barrier, WL or QW, the second excited state, first exited state and ground state, respectively.

As the Pauli’s exclusion principle expresses, the occupation probability in the QD ground state is equal $P = N_0/(2N_D V_a)$, where N_D is the QD volume density. g_m is the maximum modal gain, which can be described as:

$$g_m = \frac{\hbar q}{cn_m\epsilon_0 m_e E_L} \sqrt{2\pi} \left(\frac{2.35}{\Gamma p} \right) \frac{\Gamma p}{d_{th}}$$

where, \hbar, q, c, n_m, ϵ_0, E_L is the Planck’s constant, electronic charge, velocity of light, refractive index of the active region, electron rest mass, absolute permittivity in vacuum, and lasing energy, respectively, P_{cv} is the transition matrix,(for InAs QDs is approximately equal) and Γp is the FWHM of the homogeneous broadening of the QDs. In (6), $\epsilon = \epsilon_m \Gamma /V_a$, where Γ is the full-width at half-maximum (FWHM) of the inhomogeneous broadening of the QDs. In (6), $\epsilon_m \Gamma /V_a$ is the volume of all QDs in the active region and ϵ_m is the nonlinear gain coefficient, which is expressed as [17]

$$\epsilon_m = \frac{q^2}{cn^2 m_e \epsilon_0 m_p E_L} \frac{1}{F_{th}^2} t_p$$

Where $2F_{th}$ is the FWHM of the homogeneous broadening of the QDs. For this circuit model, we consider material and geometrical parameters of QD-VCSEL in Table I [14]–[17].
III. THERMAL EFFECT

To implement a circuit model including thermal effects we need to determine a method for importing these effects valid for static and dynamic analysis. A method to account the thermal effects is to write the main VCSEL parameters as functions of temperature [18],[19]. However, in this way numerical solutions are preferred because of the complexity and lots of details. In another method, all of the thermal effects are collocated and defined as an modifying offset current for threshold current defined by following polynomial [7]:

TABLE I

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{wW}})</td>
<td>Carrier transport time from cladding layer to the nearest WL(CL)</td>
<td>1.39ps</td>
</tr>
<tr>
<td>(t_c)</td>
<td>Carrier capture time</td>
<td>.3ps</td>
</tr>
<tr>
<td>(t_{\text{wn}})</td>
<td>Carrier escape time from WL(CL) to the GaAs barrier</td>
<td>1.12ps(electron), .35ps(hole) [16]</td>
</tr>
<tr>
<td>(t_{\text{d}(i=W,2,1,0)})</td>
<td>carrier life time in the barrier, WL(CL), second excited state, first excited state and QD ground state, respectively</td>
<td>1ns</td>
</tr>
<tr>
<td>(t_{ij})</td>
<td>Carrier transport time</td>
<td>(T_{t_{22}^i, t_{21}^i, t_{10}^i}=2.5ps)</td>
</tr>
<tr>
<td>(t_{ei,j})</td>
<td>Carrier escape time</td>
<td>(T_{e2w_i}=8.25ps), (t_{e12_i}, t_{e01_i}=29.3ps)</td>
</tr>
<tr>
<td>(S_a)</td>
<td>Area of active region</td>
<td>78.53(\mu)m(^2)</td>
</tr>
<tr>
<td>(L_c)</td>
<td>Cavity length</td>
<td>1.145(\mu)m</td>
</tr>
<tr>
<td>(L_d)</td>
<td>Distance from the doped cladding layer to QW</td>
<td>.2(\mu)m</td>
</tr>
<tr>
<td>(L_w)</td>
<td>Thickness of wetting layer</td>
<td>.48nm</td>
</tr>
<tr>
<td>(A)</td>
<td>Average absorption loss in the active region</td>
<td>2cm(^{-1})</td>
</tr>
<tr>
<td>(R_1, R_2)</td>
<td>facet reflectivity</td>
<td>.32</td>
</tr>
<tr>
<td>(V_0)</td>
<td>Volume of one QD</td>
<td>1.6(\times 10^{-24})m(^3)</td>
</tr>
<tr>
<td>(E_{\text{BW}})</td>
<td>Effective energy barrier</td>
<td>102mev(electron), 93mev(hole)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>QD surface density</td>
<td>5(\times 10^{10})cm(^2)</td>
</tr>
<tr>
<td>(D)</td>
<td>Total thickness of GaAs</td>
<td>191nm</td>
</tr>
<tr>
<td>(t_p)</td>
<td>Photon life time in the cavity</td>
<td>4.75ps</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>Optical confinement factor</td>
<td>.06</td>
</tr>
<tr>
<td>(A_{ij})</td>
<td>phonon-assisted relaxation rate</td>
<td>[13]</td>
</tr>
<tr>
<td>(C_{ij})</td>
<td>Auger relaxation coefficient between ith and jth level(i, j = 0, 1, 2)</td>
<td>[13]</td>
</tr>
<tr>
<td>(E_{ij})</td>
<td>Energy band value</td>
<td>[13]</td>
</tr>
<tr>
<td>(n_e)</td>
<td>Refractive index</td>
<td>3.5</td>
</tr>
</tbody>
</table>
\[I_{th}(T) = a_0 + a_1T + a_2T^2 + a_3T^3 + a_4T^4 + \ldots \quad (10) \]

where \(a_0-a_n \) are constant coefficients. This method is more comprehensive and can predict reducing the slope of the LI curve at high temperatures and roll-over effect at high currents. If just consider the temperature dependence of the threshold current as proportional to \(\exp(T/T_0) \), none of the above mentioned characteristics are observed.

As an approach for developing a model, one can model VCSEL at above threshold using \(P_o = \omega(I-I_{th}) \) where \(P_o \) is the optical output power, \(I \) is the injection current, \(\omega \) is the temperature-dependent slope efficiency and \(I_{th} \) is the threshold current as a function of temperature carrier number [20]. Such models have been proposed in [21,22] and since are based on static LI curve are not effective for simulating small signal and transient behaviours. Thus their application in the design of optoelectronic systems is restricted. Nonetheless, by using the standard laser rate equations, the resulted model acquires the capabilities of prediction of dynamic behaviours in time and frequency domains beside static (DC) behaviour. By including thermal effects in rate equations, the effect of temperature variations due to ambient temperature and device self heat up can be anticipated. In addition, since rate equations are widely accepted for semiconductor laser analysis, the proposed method is applicable for other type of semiconductor lasers.

To start the modeling procedure, we need an expression to calculate the current-voltage characteristic. The advantages of polynomial functions are simplicity, The ability to accurate modeling of voltage versus current in different ambient temperatures and decoupling optical and electrical device characteristics.

\[T = T_0 + (IV - P_o)R_{th} - \tau_{th} \frac{dT}{dt} \quad (11) \]

The current-voltage characteristic can be written in forms diode-like relationship and polynomial functions of current and temperature.

\[V = f(T)g(I) \quad (12) \]

\[V = (b_0 + b_1I + b_2I^2 + \ldots)(c_0 + c_1I + c_2I^2 + \ldots) \quad (13) \]

IV. IMPLEMENTATION CIRCUIT MODEL

To implement the rate equation in the simulator for using in photonic and optoelectronic system design, the circuit model must be able to connect electrical component such as driver and transmitter. Transformations required to Defining circuit model element described in [26],[27]. nonlinear character and multiple solution regimes of the rate equations are drawbacks for converging to correct answer[24]. To solve this problem, we use \(P_o = (V_{th} + \delta)^2 \), \(N_i = V_{th} \) that \(P_0 , N_i(i=b, w, 2, 1, 0) \) transformed into \(v_m \) and \(v_i \) where \(\delta, \ z_a \) are arbitrary constants[7]. After substituting these transformations into (2)-(6). The equivalent circuit is obtained that Shown in Figure 2.

\(p_o \) and \(n_o \) are electrical inputs of QD-VCSEL to connect previous stage, \(p_o \) is output light of laser, \(V_r \) Expresses temperature of laser, \(V_r(i=B, W, 2, 1, 0) \) is carrier number in layers of rate equation, \(E_{th} \) is non-linear voltage source to make The voltage across the laser, \(c_m \) is equivalent to parasitic capacitance of the laser. By definition, resistance \(R_T = R_{th} \) capacitance \(c_T = \tau_{th}/R_{th} \) and current source \(G_T \) laser temperature(T) modeled to node voltage(V_P). To model (1),we define resistance \(R_B = 2qZ_a/N_{th} \), capacitance \(c_B = qZ_a/N_{th} \), current sources \(G_{th} = z_e/N_{th} \). That \(G_{th} \) is the offset current. Number of carriers in wetting layer is modeled with resistance \(R_w = z_e/N_{th} \), capacitance \(c_w = z_e \) and current sources \(G_{BW}, G_{WB}, G_{BW} = z_e/N_{BW} \). We do same process for second exited state and first exited state. Also, we model (5) with resistance \(R_{th} = z_e/N_{th} \), capacitance \(c_{th} = 2z_e \) and current sources \(G_{th} = z_e/N_{th} \), \(G_{th} = z_e/N_{th} \). The photon rate equation is modeled with resistance \(R_{th} = 1 \), capacitance \(c_{th} = 2z_e \) and \(G_{Stm} = \delta \) that create \(P_o \).

\[G_{Stm} = \frac{v_g g_m}{k} \frac{\left(\frac{z_e V_0}{N_D V_a} - 1 \right)}{1 + \frac{\varepsilon}{k} (V_m + \delta)^2} \quad (14) \]

\[G_{Stm} = \frac{v_g g_m}{k} \frac{\left(\frac{z_e V_0}{N_D V_a} - 1 \right)(V_m + \delta)}{1 + \frac{\varepsilon}{k} (V_m + \delta)^2} - \delta \quad (15) \]
V. STEADY-STATE, TRANSIENT AND SMALL SIGNAL ANALYSIS

Fig. 3 represents steady-state simulation results obtained by proposed circuit model that well conforms with experimental data provided in [28].

The transient response of QD-VCSEL for 2.5Gb/s random data that input current level varying between 2mA and 6mA shown in Fig. 5. As can be seen, Circuit model is able to simulate overshoot and relaxation time.

The Simulated modulation response of QD-VCSEL shown in Fig. 5 for different bias current(Ith, 1.2Ith, 1.5Ith, 2Ith, 2.5Ith). As can be seen, Increasing the bias current leads to an increase in laser bandwidth.
VI. CONCLUSION

We have presented a circuit model based on the QD-vcSEL rate equations that including thermal effects. To importing thermal effect in rate equation, we use a offset current. As a result, with this approach, without getting into the details of the internal temperature of the laser, the thermal effects are modeled. This model in addition the ability to simulate the effects of static, can simulate dynamics effects such as transient and small signal.

REFERENCES

