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Abstract Diabetes mellitus increases the risk of central ner-

vous system (CNS) disorders such as stroke, seizures, demen-

tia, and cognitive impairment. Berberine, a natural isoquinoline

alkaloid, is reported to exhibit beneficial effect in various

neurodegenerative and neuropsychiatric disorders. Moreover,

astrocytes are proving critical for normal CNS function, and

alterations in their activity and impaired oxidative stress could

contribute to diabetes-related cognitive dysfunction. Metabolic

and oxidative insults often cause rapid changes in glial cells.

Key indicators of this response are increased synthesis of glial

fibrillary acidic protein (GFAP) as an astrocytic marker. There-

fore, we examined the effects of berberine on glial reactivity of

hippocampus in streptozotocin (STZ)-induced diabetic rats,

using GFAP immunohistochemistry. Lipid peroxidation, super-

oxide dismutase (SOD) activity, and nitrite levels were assessed

as the parameters of oxidative stress. Eight weeks after diabetes

induction, we observed increased numbers of GFAP+ astrocytes

immunostaining associated with increased lipid peroxidation,

decreased superoxide dismutase activity, and elevated nitrite

levels in the hippocampus of STZ-diabetic rats. In contrast,

chronic treatment with berberine (50 and 100 mg/kg p.o. once

daily) lowered hyperglycemia, reduced oxidative stress, and

prevented the upregulation of GFAP in the brain of diabetic

rats. In conclusion, the present study demonstrated that the

treatment with berberine resulted in an obvious reduction of

oxidative stress and GFAP-immunoreactive astrocytes in the

hippocampus of STZ-induced diabetic rats.
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Introduction

Diabetes mellitus (DM) is strongly associated with degenera-

tive and functional disorders of the central nervous system [1].

Increasing evidence shows that oxidative stress is the final

common pathway through which risk factors of several dis-

eases, including diabetes, exert their deleterious effects [2].

Reactive oxygen species (ROS) and other chemical entities

can result in the development of oxidative stress in the body

and consequently lead to neuronal death, which contributes to

the neuropathology associated with diabetes [3]. Furthermore,

hyperglycemia reduces the levels of superoxide dismutase

(SOD), a key antioxidative enzyme. It also increases lipid

peroxidation and free radicals such as nitric oxide (NO) [4].

Astrocytes play critical roles in a number of central nervous

system (CNS) activities including synaptic activity and

synaptogenesis, production of growth factors, and regulation

of the cerebral microcirculation protection against toxic epi-

sodes such as excitotoxicity and oxidative stress [5, 6]. More-

over, astrocytes preserve neuronal survival through inactivation

of ROS [7–9].

In response to any kind of injury to CNS, astrocytes change

their appearance and undergo a characteristic hypertrophy of

their cellular processes. This phenomenon is known as reac-

tive gliosis or astrogliosis [10]. A key indicator of glial reac-

tivity is the increased synthesis of glial fibrillary acidic protein

(GFAP), an intermediate filament cytoskeletal protein [11].
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Increases in GFAP are commonly used to examine the distri-

bution of glial cells in response to neural injury [7, 12].

Berberine is an isoquinoline alkaloid reported to exhibit

anxiolytic, analgesic, anti-inflammatory, antipsychotic, antide-

pressant, and antiamnesic effects [13–15]. A number of clinical

and preclinical investigations have shown beneficial effects of

berberine on diabetes [16–19] which are mainly attributed to

enhanced insulin expression, B cell regeneration and potential

as an antioxidant [20, 21]. Moreover, berberine is also reported

to inhibit acetylcholinesterase enzyme activity and play an

important role in metabolic syndrome [22]. In addition, Peng

et al. showed that the antiamnesic effect of berberine is related

to an increase in peripheral and central cholinergic neuronal

system activity [23]. Recently, berberine has been reported to

have beneficial effects on neural health. It can also protect

neurons from various brain insults [14, 24, 25]. This study set

out to determine whether chronic oral administration of berber-

ine could improve oxidative stress and astrogliosis in the hip-

pocampus of the streptozotocin-induced diabetic rats.

Materials and Methods

Animals

Male albino Wistar rats (Pasteur’s Institute, Tehran, Iran)

weighing 225–285 g were housed in an air-conditioned colo-

ny room on a light/dark cycle (21–23 °C and a humidity of

30–40 %) and supplied with standard pelleted diet and tap

water ad libitum. Procedures involving animals and their care

were conducted in conformity with the NIHGuidelines for the

Care and Use of Laboratory Animals.

Experimental Procedure

The rats (n=60) were randomly selected and allocated to five

groups: control, control berberine-treated (100 mg/kg), diabetic,

and diabetic berberine-treated (50 and 100 mg/kg) groups. Ber-

berine hydrochloride and streptozotocin (Sigma-Aldrich Co., St.

Louis, MO, USA) were used in the present study. All the drugs

were dissolved in double-distilled water except streptozotocin

(STZ), which was dissolved in citrate buffer (pH 4.4). Drug

solutions were prepared fresh, and their doses were expressed in

terms of their free bases. Diabetes was induced in rats using an

earlier reportedmethod [26]. In brief, STZwas dissolved in 0.1M

sodium citrate buffer, pH 4.4, and administered at the dose of

55 mg/kg through i.p. route. Streptozotocin-treated rats received

5% of glucose solution instead of water for 24 h after injection of

STZ in order to reduce the death due to hypoglycemic shock.

Blood samples were taken from the tail vein 72 h after STZ

injection to measure blood glucose levels. Control animals re-

ceived an injection of an equivalent volume of normal saline. One

week after STZ injection, overnight fasting blood samples were

collected and serum glucose concentrations were measured using

the glucose oxidation method (Zistshimi, Tehran). Only those

animals with a fasting serum glucose level higher than 250 mg/

dl were selected as diabetic for the following experiments. The

day on which hyperglycemia had been confirmed was designated

as day 0. Berberine chloride was administered p.o. at doses of 50

and 100 mg/kg/day 1 week after STZ injection for a period of

8 weeks. Biochemical and immunohistochemical assessment was

performed at the end of the study as described below.

Hippocampal Malondialdehyde Measurements

The rats were anesthetized with ketamine (100 mg/kg); decap-

itated brains were removed, and the anterior third left of the left

midbrain block was blotted dry, weighed, made into a 10 %

tissue homogenate in ice-cold 0.9 % saline solution, and cen-

trifuged (1,000×g , 4 °C, 10 min) to remove particulates. The

obtained supernatant was aliquoted and stored at −80 °C until

assayed. Malondialdehyde (MDA), a marker of lipid peroxida-

tion, was measured by a commercial colorimetric assay kit

(BioVision, Milpitas, CA, USA) following the manufacturer’s

instructions. MDA levels in hippocampal sample homogenates

were expressed as nanomoles ofMDApermilligram of protein.

Measurement of Hippocampal SOD Activity

The supernatant of hippocampal homogenate was obtained as

described earlier. SOD activity measurement was according to

the previous works. Briefly, the supernatant was incubated

with xanthine and xanthine oxidase in potassium phosphate

buffer (pH 7.8, 37 °C) for 40 min, and nitroblue-tetrazolium

(NBT) was added. Blue formazan was then monitored spec-

trophotometrically at 550 nm. The amount of protein that

inhibited NBT reduction to 50 % maximum was defined as

1 nitrite unit (NU) of SOD activity.

Assay of Hippocampal NO Concentration

Supernatant NO content was assayed by the Griess method.

NO is a compound with a short half-life, and it is rapidly

converted to the stable end products of nitrate (NO3
−) and

nitrite (NO2
−); consequently, the principle of the assay is the

conversion of nitrate into nitrite by cadmium followed by

color development with Griess reagent (sulfanylamide and

N -naphthyl ethylenediamine) in acidic medium. The total

nitrite was measured by Griess reaction. The absorbance was

determined at 540 nm with a spectrophotometer.

Protein Assay

The protein content of the supernatant was measured with the

Bradford method using bovine serum albumin (Sigma Chem-

ical, St. Louis, MO, USA) as the standard [5].

Mol Neurobiol (2014) 49:820–826 821



Immunohistochemistry

Five rats in each group were anesthetized with sodium pento-

barbital (40 mg/kg i.p.), and they were perfused with ice-cold

0.1Mphosphate-buffered saline (PBS, pH 7.4). Unfixed tissues

of the hippocampus were snap frozen in liquid nitrogen.

Cryostat sections were cut with a thickness of 5 μm

at −20 °C. Sections were incubated in 1 % H2O2 for 20 min

to inhibit endogenous peroxidase activity and then incubated in

a blocking solution of 3 % dry milk at room temperature

followed by overnight incubation at 4 °C with primary mono-

clonal antibody against GFAP. Primary antibody was diluted

(1/400) in PBS containing nonspecific goat serum in the pres-

ence of 0.2 % Triton X-100. After rinsing in PBS, the sections

were incubated for 1 h at room temperature with a 1/300 diluted

secondary antibody (goat anti-rabbit antibody). Antibody–anti-

gen complex was revealed by 0.1 % 3,3′-diaminobenzidine in

the presence of 0.03 % H2O2. After final rinse with PBS, the

sections weremounted onto cresyl gel (0.1%w /v gelatin in 8%

ethyl alcohol) and coverslipped with Eukit balsam.

Statistical Analysis

All data were expressed as mean±S.E.M. For the histological

and biochemical assessments, one-way ANOVA test followed

by Tukey’s post hoc test were applied. In all analyses, the null

hypothesis was rejected at 0.05 level.

Results

At the end of the study, the weight of the diabetic control rats

significantly decreased as compared to that of control rats. More-

over, chronic treatment with berberine (50 and 100 mg/kg)

significantly increased body weights in diabetic rats (Table 1).

In addition, diabetic rats had also an elevated serum glucose

level over those of control rats (p <0.001), and treatment of

diabetic rats with berberine at both doses of 50 and 100 mg/kg

for 8 weeks caused a significant decrease in the serum glucose

(P <0.01) as compared to diabetic control group. Moreover,

control berberine-treated (100 mg/kg) rats had also a reduction

in the weight and serum glucose level over those of control

(Table 1).

STZ-induced diabetes led to a marked elevation in the levels

of MDA in the hippocampus region compared to those of the

control group (Fig. 4). Administration of berberine (50 and

100 mg/kg) significantly reduced the levels of MDA in hippo-

campal homogenates as compared to diabetic control rats (Fig. 1).

Similarly, nitrite levels in the homogenates of hippocampus

significantly increased in diabetic rats, and chronic treatment

with berberine also significantly decreased nitrite levels in

berberine-treated group (50 and 100 mg/kg) as compared to

diabetic group (Fig. 2).

Effects of chronic administration of berberine on SOD

levels are depicted in Fig. 3. There was a significant fall in

SOD levels in hippocampal homogenates of diabetic rats as

compared to control ones. Berberine treatment (50 and

100 mg/kg) significantly increased SOD levels as compared

to diabetic rats (P <0.05) (Fig. 3).

Immunohistochemical studies used GFAP monoclonal anti-

body to examine glial reactivity in the hippocampus of STZ-

induced diabetic rats with and without berberine treatment.

Increased GFAP immunostaining was detected in the hippo-

campus of STZ-diabetic rats as compared to control. Hypertro-

phic astrocytes were apparent in the hippocampus of the dia-

betic animals, and berberine treatment (50 and 100 mg/kg/day)

reduced the number of GFAP+-immunoreactive astrocytes

(Fig. 4).

Discussion

In this study, astrocyte in the hippocampus became reactive in

diabetic rats 8 weeks after STZ injection. Increased activity of

glia is a common feature of brain injury [9, 11], and it is

commonly seen after a variety of insults, including oxidative

stress [27, 28]. Thus, we evaluated the effects of STZ-induced

oxidative stress on glial reactivity of rats and examined the

potential protective effects of berberine against oxidative

stress and glial reactivity.

Due to the hyperglycemia associated with diabetes, en-

hanced formation of reactive oxygen and nitrogen species

Table 1 Effect of chronic treat-

ment with berberine on body

weights and blood glucose levels

(mean ± S.E.M.) in different

groups of rats at the onset and at

the end of the experiments

Br berberine

#P<0.001 vs. control group; *P

<0.05 vs. diabetic group

Treatment Body weight (g) Blood glucose (mg/dl)

Onset of study End of study Onset of study End of study

Control 242.3±23.6 334.4±32.7 102.4±11.6 97.5±7.3

Control+Br (100 mg/kg) 233±15.9 265.4±22.2 84.75±5.9 73.5±3.9

Diabetes 232±17.6 152±19# 474.3±35.8 567.3±43.8#

Diabetes+Br (50 mg/kg) 246.4±16.7 197.62±21* 475.9±47.9 430.8±43.3*

Diabetes+Br (100 mg/kg) 250±22.8 217.1±27* 470.4±42.2 395±38.9*
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occurs; this leads to increased neuronal death by oxidizing

proteins, damaged DNA, and augmented levels of lipid per-

oxidation products in cellular membranes [6, 28]. Thus, we

hypothesized that glial reactivity in diabetic rats would reduce

if they were treated with the antioxidant berberine.

In the present study, administration of berberine to diabetic

treated rats (50 and 100 mg/kg) lowered GFAP immunoreac-

tivity, as themost commonmanifestation of glial hyperactivity.

There was also a significant correlation between GFAP reac-

tivity and nitrite and peroxidized lipid levels. Furthermore,

chronic treatment with berberine (50–100 mg/kg) reduced

blood glucose levels, and it increased body weights in diabetic

rats which is well in accordance to earlier studies [16, 19].

In diabetic rats MDA and nitrite levels significantly in-

creased in the hippocampus region of the brain. These results

confirm previous reports that STZ-induced diabetes is accom-

panied by an increased generation of reactive species [29–31].

One reason for the elevated lipid peroxidation and nitrite in

diabetic rats is the reduction in the levels of SOD, a potent

endogenous antioxidant. In accordance with previous publica-

tions [32], here in, we found that untreated diabetes caused

generally lower levels of SOD in the hippocampus region [16,

33]. Administration of berberine to diabetic berberine-treated

rats significantly reduced the levels of nitrite and lipid peroxi-

dation products and increased SOD activity. Even though the

exact mechanisms of neuroprotective effects of berberine in the

hippocampus of STZ-diabetic animals is not clear yet, several

hypotheses have been suggested [24, 34].

Berberine can easily cross the blood–brain barrier, trans-

port into the neurons, having a slow elimination rate, which

suggests that it has a direct action on neurons, and accumulate

in the hippocampus [35]. Other mechanisms that have been

suggested in the neuroprotective effect of berberine include

the inhibitory effects on norepinephrine, H2O2-induced [Ca
2+]

elevation and neurotransmitters induced [Ca2+] elevation [36,

37]. Moreover, berberine functions as a radical scavenger and

antioxidant agent in cells [38]. In addition to neutralizing a

variety of oxidizing species, berberine, as noted above, pro-

tects cells from oxidative damage by stimulating GSH syn-

thesis and by promoting the activity of several antioxidative

enzymes, including GSH-Px [39–41]. Even though we

showed that berberine treatment significantly decreased

diabetes-induced neuronal apoptosis and improved synaptic

dysfunction and memory impairment as compared to diabetic

control rats [26, 41], there was no evidence indicating the

protection effect of berberine on chronic oxidative stress and

astrocyte reactivity. Several mechanisms may account for the

astrocyte reaction in streptozotocin-induced diabetes, includ-

ing increases in the polyol pathway, protein glycation, dis-

turbed calcium homeostasis, and oxidative stress [11, 42].

Moreover, it is obvious that glial cells express a variety of

neurotrophic factors and cytokines that protect neurons from

reactive oxygen species-induced neurotoxicity [43, 44]. As-

trocytes are also known to have more antioxidant capacity

than do neurons [45, 46]. Astrocytes contain high levels of

GSH and GSH-Px activity [46]. Maintenance of glial GSH

levels and high activity of GSH-Px is essential in the protec-

tion of the CNS from oxidative insults. Thus, they protect

neurons against oxidative stress and promote neuronal surviv-

al [9]. Moreover, there is some evidence that berberine can

modulate NO synthesis, and it also has cyclooxygenase

(COX)-2 inhibiting property [47]. Thereby, it may have anti-

inflammatory and neuroprotective properties due to balance in

the NO system [24, 47–49]. In addition, berberine suppresses

neuroinflammatory responses through AMP-activated protein

kinase activation in BV-2 microglia and astrocyte [50]. Acti-

vated AMPK deactivates gluconeogenic enzymes and in-

crease glucose uptake by stimulating GLUT4 and GLUT1

[50, 51]. GLUT1 present at a high concentration at the

Fig. 1 Malondialdehyde (MDA) levels in hippocampal homogenates

from control, diabetic, and diabetic berberine-treated groups (50 and

100 mg/kg p.o.) of rats. #P<0.01 vs. control and *P<0.05 vs. STZ-

diabetic rats

Fig. 2 Nitrite levels in hippocampal homogenates from control, diabetic,

and diabetic berberine-treated groups (50 and 100 mg/kg p.o.) of rats.

#P<0.01 vs. control and *P<0.05 vs. STZ-diabetic rats

Fig. 3 SOD activity in hippocampal homogenates from control, diabetic,

and diabetic berberine-treated groups (50 and 100 mg/kg p.o.) of rats.

#P<0.01 vs. control and *P<0.05 vs. STZ-diabetic rats
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blood–brain barrier as well as in parenchymal cells, most

likely in astrocytes, could be relevant to the antidiabetic ef-

fects of berberine in the hippocampus [52].

The current study showed that glial cells respond to the

diabetes by overexpression of GFAP a few weeks after the

onset of diabetes induced with streptozotocin. Moreover,

administration of berberine showed beneficial effects via de-

creasing lipid peroxidation and preventing reactive gliosis.

The present findings demonstrate that, in addition to its direct

protective effects on neurons, berberine also has beneficial

effects on glial cell against chemical and/or metabolic insults

to the brain.

Fig. 4 a Photomicrographs

stained immunohistochemically

for GFAP+ astroglial cells in the

hippocampus of control and

diabetic, diabetic berberine-

treated (50 and 100 mg/kg) rats

8 weeks after STZ injection. Scale

bar=25 μm (for all figures). b

The number of all GFAP+

astroglial cells per 0.1 mm2 was

estimated. Following induction of

DM in long term, reactive

astrocytes are often identified by

increased immunoreactivity for

GFAP. In the normal brain, only a

few astrocytes expresses GFAP,

and the highest numbers of

activated astrocytes were only

seen in the diabetic rats. Values in

the figure were the means±SEM.

°P <0.001 vs. control, *P<0.05,

and P<0.01 vs. STZ-diabetic rats
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Conclusion

The authors suggest that the effect of berberine in restoring

astrogliosis and ameliorating oxidative stress was probably

one of the potential mechanisms by which berberine plays

neuroprotective activity in the hippocampus of STZ-induced

diabetic rats. Further studies are warranted to investigate

involved mechanisms in detail.
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