ارزیابی نوع زننگی و ساختار جمعیت ارقام برنج با استفاده از نشانه‌های ریزماهواره مرتبط با تجمع آهن و روزی

شهریاران ایبولطیسی، محمدحسین فتویکان، مهرداد زین العابدینی

دانش‌آموخته کارشناسی ارشد بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه شهید، تهران، ایران

دانشیار، دانشکده کشاورزی، دانشگاه شهید، تهران، ایران

آستادانیار، پژوهشکده بیوتکنولوژی کشاورزی ایران، کرج، ایران

تاریخ دریافت: 1392/12/03، تاریخ پذیرش: 1393/03/31

چکیده

تعیین میزان تنش زننگی موجود در ذخایر زننگی برنج، اولین گام در جهت پیشرفت برنامه‌های بعنوانی برنج می‌باشد. در این مطالعه، میزان تنش زننگی 50 رنگ برنج با استفاده از 40 نشانگر ریزماهواره مرتبط با آهن و روزی مورد آزمایش قرار گرفت. نتایج تجزیه‌پذیری نشان داد که تعداد آله‌های مشاهده‌شده در هر جایگاه نشانگری با میانگین 0.24/5 آلی از 0.10 آلی متغیر بود. میزان محتوای اطلاعات چندشکلی در بین نشانگرها از RM19675/0 (RM1402/30) تا RM276/0 (RM276/0) متغیر بود. میانگین محتوای اطلاعات چندشکلی بین نشانگرها 3/03 (RM276) بود. بیشترین میزان تنش زننگی و شاخص شانزه در نشانگر 2976 مشاهده گردید. در ارزیابی تجزیه ساختار، ارقام به دو زیر جمعیت تقسیم شدند: زیر جمعیت اول شامل ارقام بومی و دوم شامل ارقام اصلی و خارجی بودند. در تجزیه واریانس مولکولی، واریانس درون جمعیتی بیشتر از واریانس بین جمعیتی بوده و حداکثر فاصله زننگی بین ارقام اصلی و خارجی و حداقل آن بین ارقام بومی و خارجی مشاهده شد. براساس تجزیه‌گردنی ارقام بومی در گروه جرایی نسبت به سایر ارقام قرار گرفتند. این نتایج می‌تواند جهت طراحی برنامه‌های بعنوانی آهن و روزی دانه و گسترش باه‌های زننگی ارقام برنج استفاده سودا.

واژه‌های کلیدی: تجزیه خوشه‌ای، تجزیه ساختار جمعیت، شاخص شانزه، محتوای اطلاعات

جشن‌نامه

Email: abootalebi5585@gmail.com

نوبت‌سازی مسئول: شهریاران ایبولطیسی

تلفن: 09124187369

#4124187369
نگهداری تنوع در بانک‌های زن و زمپیلاسم و برنامه‌ریزی بنزدای اهمیت فراوانی دارد (Mohammadi et al., 2003; Omidbakhsh). نشانگرهای متوالی مورد استفاده برای بررسی تنوع مولکولی و فاصله زنتیکی AFLP، RAPD و RFLP شامل SNPs و ... می‌باشد. Microsatellites (Mburu and Hanotte, 2005). در حال حاضر نشانگرهای زمپیلاسم به دلیل پوشش مناسب زئومی و تکراری‌پذیری بالای یکی از بهترین و کامل‌ترین ابزارهای مولکولی برای بررسی تنوع زنتیکی به شمار می‌آیند. زمپیلاسم‌های واحدهای تکرار شونده ۱ تا ۶ نوکلئوتیدی هستند که در زئومی پیشرفت و پیشرفت‌ها وجود دارند (Zane et al., 2002). این توالی‌ها عموماً از جنادکنده‌بایی برخوردارند و در نواحی کدنده‌های غیرکدنده زئوم موجودات مختلف Zane et al., 2002; Karp et al., 2002) وجود دارند (۱۹۹۷). در پژوهشی که با استفاده از ۲۵ نشانگر زمپیلاسم به دست آمده بود، مسئول اصلی کروم و رنگ‌گیری از تعداد ۱۲ رقم بررسی واردی‌های صورت گرفت، در مجموع ۱۶۴ آلف شناسایی شد. بیشترین تعداد آلف مربوط به جایگاه RM70 با تعداد ۱۰ آلف و کمترین تعداد آلف در جایگاه Noori et al., 2004) با تعداد ۲ آلف بود. در مطالعه دیگری که روي تنوع زئتیکی برنج غذای اصلی بيش از نيعی از مرمدن دنيا را تامین مي‌کند به منظور تامين منابع غذایي براي جمعيت روستاويون دنيا توليد برنج تا سال 2002 (Yashitola et al., 2002). حدود سی سال قبل سوء تغذيه فقط مفاهيم معادل كمبوس دريافت پروتين و انرژي داشت، اما امروزه گسترده و سيعی از كمبوس ريزمغذیها را نيز شامدل مي‌باشد (Cole et al., 2010). حديد یک سوم جمعيت جهان و عمدناً در كشورهای در حال توسعه، به شدت تحت تاثیر كمبوس ريزمغذیها كليدي ماند آهن و روي مي‌باشد (Ghandilyan et al., 2006). امروزه تمرکز بر روی غنيسازی محصولات زراعي از نظر این ريزمغذیها به واسطه دستورالعمل زنتیکی و اصلاح نباتات به عنوان یکي از بهترین راهکارها مدرن‌تر می‌باشد. برنامه‌های اصلاح نباتات در غنيسازی محصولات زراعي از قبل گندم و برنج نيازمند بهره‌گيری از ت نوع زنتیکی موجود و غربال کردن زرم پلاسم، واریتها و لاين‌هاي متبخ برای استفاده به عنوان والدين دهنده است (Stangoulis, 2010). در حالی که اصلاح سنگه و یکنوختی کشت، تنوع زنتیکی انواع مختلف گياهان در معرض خطر قرار گرفته است. با بررسی تنوع زنتیکی زرم پلاسم‌های گياهي جهت حفاظ و

2 Restriction Fragment Lengh Polymorphism
3 Randomly Amplified Polymorphic DNA
4 Amplified Fragment Lengh Polymorphism
5 Single Nucleotide Polymorphism

1 Bio fortification
مواد و روش‌ها

مواد گیاهی

به منظور اجرای این پژوهش یک مجموعه شامل 50 رقم بروج از استحکام تحقیقات بروج چهار ساله نتیب و استحکام به مؤسسه تحقیقات بروج کشور تهیه شد. این ارگان شامل 22 رقم بروج ایرانی و 9 رقم خارجی می‌باشد (جدول 1). استخراج DNA روš ورش انجام شد.

ارقام بروج ایرانی

Iranian landrace cultivars

ارقام اصلاح شده

Iranian improved cultivars

ارقام خارجی

foreign cultivars

جدول 1- نام‌های مورد بررسی در این تحقیق

<table>
<thead>
<tr>
<th>نام‌بردار</th>
<th>ایرانی</th>
<th>تربیت</th>
<th>foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deilamani, Mosa tarom, Hashemi, Ghashange, Hasan molaee, Gharib, Ghanbarak, Rashti sard, Sang ju, Anbarbu, Faride, Abjibuji, Ali kazemi, Shahak, Hasani, Cheli, Domshia, Sadri, Shahpasand, Salari, Champabudar, Hasani fumani, Aghae seiah, Ramezanali tarom, Domsorkh, Dadras</td>
<td>ایرانی</td>
<td>ایرانی</td>
<td>foreign</td>
</tr>
<tr>
<td>Amol3, Gil3, Gil1, Haraz, Neemat, Mehr, Fajr, Dorfak, Khazar, Sepidrud, Dasht, Bojar, 111, 29 number of Mohammadi ×(Amol3× Tarom), 27 number of Asgar× Ch21</td>
<td>ایرانی</td>
<td>ایرانی</td>
<td>foreign</td>
</tr>
</tbody>
</table>

Rabbani et al., (2010) هدف از این پژوهش استفاده از نشانگرهای ریزماهواره مرتبط با تجمع آهن و رنگ به منظور ارزیابی تنوع و ساختار زندگی جمعیت و نیز گروه‌بندی ارقام بروج مورد مطالعه بوده است. انتخاب والدین مناسب براساس نتایج گروه‌بندی و سایر تجزیه و تحلیل‌های این پژوهش می‌تواند گامی مؤثر برای دستیابی به هترورپس بالاتر در راستای بهبود آهن و روی بروج باشد.
چهل نشانگر زنده‌ها براساس مطالعات نقشه‌های مکانی و زنده‌کنندگان تجمع آهن ۲۰۰۸, Ploidy در دانه برنج (۲008; Garcia-Oliveira et al., ۲۰۰۹; Stangoulis et al., ۲۰۰۷; Norton et al., ۲۰۱۰; Lu et al., ۲۰۰۸) و تنوع اطلاعات نقشه‌زنده‌کننده برنج از سایت‌های www.agri-gramene.org و trait.dna.afric.go.jp

ابزاردهی‌ها با استفاده از ترم‌افزار AlphaEase انجام گرفت. میزان اطلاعات و نتایج گرفته‌کننده در همان‌گونه انجام گرفت. مناسب‌ترین نشانگر جهت بررسی تنوع زنی‌کننده (Botstein, ۱۹۸۰) براساس رابطه (۱) محاسبه گردید.

\[\text{PIC} = 1 - \frac{\sum_{i=1}^{n} P_i^2 - 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} P_i P_j}{2} \]

رابطه (۱)

در این رابطه N رابطه و Pi و Pr به ترتیب فراوانی آلفاها i و یک ماکان در بررسی زنده‌کننده است که برای ول یک نمونه داده می‌شود. تنوع زنی (۱۹۷۸) و Shannon (۱۹۴۹) از مشاهده شانس‌زنی ای (Weaver, ۱۹۴۹) نیز که از مشاهده نیروی دیگری برای مقایسه میزان تنوع زنی‌کننده نمونه‌هاست از رابطه‌های (۲) و (۳) بدست آمده‌ند.

\[H_i = 1 - \sum_{i=1}^{n} P_i^2 \]

رابطه (۲)

\[\bar{H} = \frac{1}{n} \sum_{i=1}^{n} H_i \]

رابطه (۳)

در این رابطه Fp اطلاعات فوق فراوانی آلفاهم‌ها و n تعداد کل آلفاهم‌ها مشاهده شده در آن مکان زنی است. کله‌ی مشاهده‌ای با استفاده از ترم‌افزار Power marker ذکر شده با استفاده از ترم‌افزار Arlequin (Liu and Mase, ۲۰۰۵) ver ۳.۲۵ تجزیه و ارتباط مولکولی نیز با استفاده از نرم افزار enjeg (Excoffier) انجام شد.

\[\text{PIC} = 1 - \frac{\sum_{i=1}^{n} P_i^2 - 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} P_i P_j}{2} \]

۱ Polymorphic Information Content (PIC)
الجزایریان آمارهای انواع زننیکی از میان 60 نسانگر مورد بررسی 34 نسانگر چندشکل بودند و در مجموع 179 آلل مشاهده شد. تعداد آلل مشاهده شده در هر چندشکل از 2 تا 10 متغیر بود که به طور متوسط 4.27 آلل برای هر نسانگر می‌باشد. بیشترین تعداد آلل در آغازگر RM349 و کمترین تعداد آلل در RM6925 مشاهده شد (جدول ۳). همچنین در رای از نسانگر RM276 و RM19675 کمترین آن در RM19675 و بست‌آمد. بیشترین میزان اطلاعات چندشکلی (۳۰/۰) و نیز انواع زننیکی RM276 و کمترین میزان اطلاعات چندشکلی (۲۴/۰) و انواع زننیکی RM19675 بود.

میانگین شاخص میزان چندشکلی کل ۲۷ نسانگر ریزماهواره مرتبه به یکی ۴۰ رکم بومی و اصلاح شده و خارجی بیشترین تعداد آلل چندشکل شاخص RM276 شانون و میزان چندشکل را نشان داد. (Tabkhkar et al., 2011)

همچنین به منظور تجزیه مؤثر ساختار جمعیت و دستهبندی دقیق زننیک‌ها به جمعیت‌های مناسب و تشخیص زننیک‌های مختلط با استفاده از روش Bayesian ارزیابی ساختار جمعیت انجام گرفت (2000). این روش هر یک از زننیک‌ها را با یک احتمال و طوری به زننیک‌های فرضی منسوب می‌کند که در هر زننیک‌های فرضی اولیه در نظر گرفته شد و تعادل مرحله گامی حداکثر باشد. بین 1 تا 10 زننیک‌های فرضی اولیه در نظر گرفته شد و جهت آفزایش دقت برای هرکدام از زننیک‌های با سه تکرار منظور گردید. برای این منظور از مدل Admixture ترکیبی و استقلال فراوانی آلمی با burn-in 5000 تکرار آزمایش با استفاده گردید تا محدود حداکثر MCMC تکرار A درست نمایی حاصل شود. نرم‌افزار Structure برای هر مقدار K (تعداد واقعی زنبور جمعیت) یک ماتریس به نام Qa را بدست می‌دهد که این ماتریس شامل برآورد ضرایب احتمال عضویت هر زننیک در هر یک از زننیک‌های است.

Evanno تعداد واقعی زننیک‌های براساس روش و همکاران (2005) تعبیر شد. این روش بر آماره استوار است که شبیه تابع احتمالی را در ΔK نقطه می‌شکند که تعداد K فرضی در آن نقطه دارای حداکثر احتمال باشد. تجزیه نحوه‌ای با استفاده از ضریب فاصله به روش Neighbor Net 1000 تکرار توسط نرم‌افزار

1Markov Chain Monte Carlo
جدول 2- مشخصات نشانگرهای ریزماهواره مورد استفاده

<table>
<thead>
<tr>
<th>نشانگر</th>
<th>کروموزوم</th>
<th>تکراری نشانگر</th>
<th>کروموزوم</th>
<th>تکراری نشانگر</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM259</td>
<td>1</td>
<td>(CT)17</td>
<td>RM234</td>
<td>7</td>
</tr>
<tr>
<td>RM243</td>
<td>1</td>
<td>(CT)18</td>
<td>RM137</td>
<td>8</td>
</tr>
<tr>
<td>RM81</td>
<td>1</td>
<td>(TCT)10</td>
<td>RM152</td>
<td>8</td>
</tr>
<tr>
<td>RM237</td>
<td>1</td>
<td>(CT)18</td>
<td>RM407</td>
<td>8</td>
</tr>
<tr>
<td>RM34</td>
<td>1</td>
<td>(CT)17(CT)2</td>
<td>RM337</td>
<td>8</td>
</tr>
<tr>
<td>RM53</td>
<td>2</td>
<td>(GA)14</td>
<td>RM6925</td>
<td>8</td>
</tr>
<tr>
<td>RM300</td>
<td>2</td>
<td>(GTT)14</td>
<td>RM22253</td>
<td>8</td>
</tr>
<tr>
<td>RM6641</td>
<td>2</td>
<td>(GTA)14</td>
<td>RM22254</td>
<td>8</td>
</tr>
<tr>
<td>RM6931</td>
<td>3</td>
<td>(TTA)32</td>
<td>RM296</td>
<td>9</td>
</tr>
<tr>
<td>RM6832</td>
<td>3</td>
<td>(TCT)8</td>
<td>RM257</td>
<td>9</td>
</tr>
<tr>
<td>RM349</td>
<td>4</td>
<td>(GA)16</td>
<td>RM215</td>
<td>9</td>
</tr>
<tr>
<td>RM1089</td>
<td>5</td>
<td>(AC)33</td>
<td>RM239</td>
<td>10</td>
</tr>
<tr>
<td>RM276</td>
<td>6</td>
<td>(AG)8A(GA)33</td>
<td>RM21</td>
<td>11</td>
</tr>
<tr>
<td>RM402</td>
<td>6</td>
<td>(ATA)7</td>
<td>RM270</td>
<td>12</td>
</tr>
<tr>
<td>RM217</td>
<td>6</td>
<td>(CT)20</td>
<td>RM20</td>
<td>12</td>
</tr>
<tr>
<td>RM204</td>
<td>6</td>
<td>(CT)44</td>
<td>RM3331</td>
<td>12</td>
</tr>
<tr>
<td>RM7193</td>
<td>6</td>
<td>(ATAG)7</td>
<td>RM235</td>
<td>12</td>
</tr>
<tr>
<td>RM6823</td>
<td>6</td>
<td>(AAG)14</td>
<td>RM1999</td>
<td>12</td>
</tr>
<tr>
<td>RM19708</td>
<td>6</td>
<td>(TA)14</td>
<td>RM28722</td>
<td>12</td>
</tr>
<tr>
<td>RM19675</td>
<td>6</td>
<td>(TA)22</td>
<td>RM17</td>
<td>12</td>
</tr>
</tbody>
</table>

براساس نتایج بدست آمده در این پژوهش، شاخص شانون جمعیت‌های بومی، اصلاحی و خارجی به ترتیب 0.88، 0.87 و 0.80 بوده است. در نتایج برخی از شاخص‌های در جمعیت بومی بیانگر وجود تنواع بالا در ارقام بومی می‌باشد.

بررسی واریانس مولکولی و ساختار زننیکی

جمعیت

به منظور ارزیابی درصد و سهم تنواع زننیک درون و بین جمعیت‌های سطح مولکولی تجزیه واریانس مولکولی ۱ انجام گردید که نتایج در جدول ۴ نشان داده شده است. براساس نتایج

1 Analysis of Molecular Variance (AMOVA)
Table 3: Diversity statistic of microsatellite markers in evaluated rice cultivars.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Major Allele Frequency</th>
<th>Observed Allele Number</th>
<th>Effective Allele Number</th>
<th>Genomic diversity</th>
<th>Shannon Index</th>
<th>Size of Allele (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM217</td>
<td>0.42</td>
<td>5</td>
<td>3.23</td>
<td>0.69</td>
<td>0.64</td>
<td>1.32</td>
</tr>
<tr>
<td>RM276</td>
<td>0.28</td>
<td>9</td>
<td>6.51</td>
<td>0.85</td>
<td>0.83</td>
<td>2.03</td>
</tr>
<tr>
<td>RM8226</td>
<td>0.26</td>
<td>6</td>
<td>5.12</td>
<td>0.80</td>
<td>0.78</td>
<td>1.69</td>
</tr>
<tr>
<td>RM402</td>
<td>0.18</td>
<td>7</td>
<td>6.58</td>
<td>0.85</td>
<td>0.83</td>
<td>1.91</td>
</tr>
<tr>
<td>RM7193</td>
<td>0.5</td>
<td>8</td>
<td>3.20</td>
<td>0.69</td>
<td>0.65</td>
<td>1.49</td>
</tr>
<tr>
<td>RM204</td>
<td>0.27</td>
<td>7</td>
<td>4.90</td>
<td>0.80</td>
<td>0.77</td>
<td>1.72</td>
</tr>
<tr>
<td>RM337</td>
<td>0.46</td>
<td>5</td>
<td>3.18</td>
<td>0.69</td>
<td>0.64</td>
<td>1.34</td>
</tr>
<tr>
<td>RM152</td>
<td>0.38</td>
<td>5</td>
<td>3.50</td>
<td>0.71</td>
<td>0.66</td>
<td>1.36</td>
</tr>
<tr>
<td>RM407</td>
<td>0.44</td>
<td>4</td>
<td>3.25</td>
<td>0.69</td>
<td>0.64</td>
<td>1.27</td>
</tr>
<tr>
<td>RM235</td>
<td>0.26</td>
<td>6</td>
<td>5.12</td>
<td>0.80</td>
<td>0.78</td>
<td>1.69</td>
</tr>
<tr>
<td>RM17</td>
<td>0.72</td>
<td>5</td>
<td>1.82</td>
<td>0.45</td>
<td>0.42</td>
<td>0.9</td>
</tr>
<tr>
<td>RM3331</td>
<td>0.31</td>
<td>5</td>
<td>4.45</td>
<td>0.78</td>
<td>0.74</td>
<td>1.55</td>
</tr>
<tr>
<td>RM270</td>
<td>0.5</td>
<td>3</td>
<td>2.6</td>
<td>0.62</td>
<td>0.54</td>
<td>1.02</td>
</tr>
<tr>
<td>RM20</td>
<td>0.32</td>
<td>9</td>
<td>5.59</td>
<td>0.82</td>
<td>0.80</td>
<td>1.92</td>
</tr>
<tr>
<td>RM259</td>
<td>0.46</td>
<td>5</td>
<td>2.93</td>
<td>0.66</td>
<td>0.60</td>
<td>1.22</td>
</tr>
<tr>
<td>RM237</td>
<td>0.64</td>
<td>3</td>
<td>2.09</td>
<td>0.52</td>
<td>0.46</td>
<td>0.89</td>
</tr>
<tr>
<td>RM243</td>
<td>0.38</td>
<td>4</td>
<td>3.64</td>
<td>0.73</td>
<td>0.68</td>
<td>1.34</td>
</tr>
<tr>
<td>RM34</td>
<td>0.52</td>
<td>3</td>
<td>2.59</td>
<td>0.61</td>
<td>0.55</td>
<td>1.02</td>
</tr>
<tr>
<td>RM300</td>
<td>0.42</td>
<td>5</td>
<td>2.72</td>
<td>0.63</td>
<td>0.56</td>
<td>1.14</td>
</tr>
<tr>
<td>RM1089</td>
<td>0.44</td>
<td>7</td>
<td>3.33</td>
<td>0.70</td>
<td>0.65</td>
<td>1.42</td>
</tr>
<tr>
<td>RM234</td>
<td>0.26</td>
<td>6</td>
<td>4.70</td>
<td>0.79</td>
<td>0.75</td>
<td>1.61</td>
</tr>
<tr>
<td>RM215</td>
<td>0.36</td>
<td>3</td>
<td>2.98</td>
<td>0.66</td>
<td>0.59</td>
<td>1.1</td>
</tr>
<tr>
<td>RM257</td>
<td>0.36</td>
<td>8</td>
<td>4.88</td>
<td>0.80</td>
<td>0.77</td>
<td>1.80</td>
</tr>
<tr>
<td>RM21</td>
<td>0.34</td>
<td>7</td>
<td>4.84</td>
<td>0.79</td>
<td>0.77</td>
<td>1.73</td>
</tr>
<tr>
<td>RM6925</td>
<td>0.32</td>
<td>10</td>
<td>5.27</td>
<td>0.81</td>
<td>0.79</td>
<td>1.88</td>
</tr>
<tr>
<td>RM22254</td>
<td>0.58</td>
<td>4</td>
<td>2.30</td>
<td>0.57</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td>RM19708</td>
<td>0.46</td>
<td>3</td>
<td>2.72</td>
<td>0.63</td>
<td>0.56</td>
<td>1.04</td>
</tr>
<tr>
<td>RM28722</td>
<td>0.78</td>
<td>2</td>
<td>1.52</td>
<td>0.34</td>
<td>0.28</td>
<td>0.52</td>
</tr>
<tr>
<td>RM19675</td>
<td>0.86</td>
<td>4</td>
<td>1.34</td>
<td>0.25</td>
<td>0.24</td>
<td>0.54</td>
</tr>
<tr>
<td>RM1999</td>
<td>0.34</td>
<td>5</td>
<td>4.31</td>
<td>0.77</td>
<td>0.73</td>
<td>1.54</td>
</tr>
<tr>
<td>RM6931</td>
<td>0.41</td>
<td>5</td>
<td>2.91</td>
<td>0.66</td>
<td>0.59</td>
<td>1.23</td>
</tr>
<tr>
<td>RM6832</td>
<td>0.46</td>
<td>6</td>
<td>3.62</td>
<td>0.72</td>
<td>0.69</td>
<td>1.53</td>
</tr>
<tr>
<td>RM349</td>
<td>0.76</td>
<td>2</td>
<td>1.57</td>
<td>0.36</td>
<td>0.30</td>
<td>0.55</td>
</tr>
<tr>
<td>RM22253</td>
<td>0.42</td>
<td>3</td>
<td>2.77</td>
<td>0.64</td>
<td>0.56</td>
<td>1.05</td>
</tr>
<tr>
<td>Mean</td>
<td>0.44</td>
<td>5.27</td>
<td>3.59</td>
<td>0.67</td>
<td>0.63</td>
<td>1.34</td>
</tr>
</tbody>
</table>
به عنوان مثال رقم هزاراً از تلاقی دمسیا ۴×۸ IR498×IR8 حامل شدند. IR29×۱

برای بررسی فاصله زننده بین و درون جمعیت‌ها، فاصله زننده بین ارقام اصلاحی و خارجی می‌باشد. به این می‌تواند به دلیل استفاده از زننده‌پی‌های خارجی در برنامه‌های اصلاحی باشد.

جدول ۴- نتایج تجزیه واریانس مولکولی بر روی جمعیت‌های برنج.

<table>
<thead>
<tr>
<th>درصد توزیع</th>
<th>اجزای واریانس</th>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
<th>S.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.03</td>
<td>1.748</td>
<td>124.513</td>
<td>2</td>
<td>بین جمعیت‌ها</td>
<td></td>
</tr>
<tr>
<td>83.97</td>
<td>9.162</td>
<td>888.727</td>
<td>97</td>
<td>درون جمعیت‌ها</td>
<td></td>
</tr>
<tr>
<td>10.910</td>
<td>1013.240</td>
<td>99</td>
<td></td>
<td>کل</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱- متوسط تفاوت دو به دوی جمعیت‌ها (براساس نرم افزار Arlequin).

Figure 1- Populations average pairwise difference (Using Arlequin software).
تجزیه مؤثر ساختار جمعیت و دسته‌بندی دقیق افراد به زیرجمعیت‌های مناسب با استفاده از ترم انجام گرفته (شکل 2). با توجه به اینکه مقادیر حداکثر ΔK به‌دست آمده، بنابراین زنوتیپ‌های برنج مورد مطالعه به احتمال قوی دارای دو زیرجمعیت بودند. در $K=2$ از میان 26 رقم بومی، 20 رقم ($77/94$ درصد از ارقام بومی) در زیرجمعیت اول قرار گرفتند و 6 رقم بومی ($23/08$ درصد) (دارس، قمرک، حسینی، فرمی، چنی و شاهک) علاوه بر زیرجمعیت اول دارای خصوصیت زنوتیپی از زنوت خود با

![Figure 2- Classification of 50 rice cultivars using structure software.](image)

شکل 2- گروه‌بندی 50 رقم برنج براساس ترم انزالار

تجزیه خوشه‌ای ارقام برنج براساس نمودار تجزیه خوشه‌ای ارقام در چهار گروه قرار گرفتند که گروه اول بیشترین تعداد ارقام (27 رقم) را شامل می‌شد و اغلب ارقام بومی را به خود اختصاص داده است (شکل 3). گروه‌های دوم و چهارم هر دو نوع رقم اصلاحی و بومی را دارا بودند و گروه دوم با

داشتی 3 رقم (دارس، بجار و درفک) کوچک‌ترین گروه می‌باشد. گروه سوم شامل 16 رقم بوده که اکثر ارقام خارجی همراه با برخی ارقام اصلاحی (مهر، فجر، هر آذربیجان و سیبیرو) در این گروه قرار گرفتند. در تجزیه خوشه‌ای 119 رقم بومی، اصلاحی و خارجی با استفاده از نشانگرهای

زیرجمعیت دوم مشاهده در این میزان شیاهترین به زیرجمعیت اول بیشتر می‌باشد. اغلب ارقام اصلاحی و خارجی زیر جمعیت دوم را شامل می‌شوند. همچنین ارقام اصلاحی بیشتر و سپس گیل به شماره 29 محمدر ترکیب از هر دو زیرجمعیت را دارا بودند. یکسان شدن زیرجمعیت ارقام اصلاحی با ارقام خارجی و نیز حالت اختلاط آنها با ارقام بومی ایرانی می‌تواند به دلیل وجود زمینه زئنتیکی مشترک بین ارقام و نیز جریان زئنی به ارقام اصلاح شده طی انجام برنامهرهای اصلاحی باشد.
تفکیک نشانهگر در و به این حاق خریداری می‌شود با
افرازیتی تعداد نشانه‌گرها در چگونگی به تفکیک
بهرم از از این مورد مطالعه دست یافته. از
آنجایی که نشانه‌گرها مورد مطالعه در این تحقیق
با میان‌های زنی کنترل کننده آهن و روی دانه
پیوسته می‌باشد، این گروه‌بندی برای میان‌های
زنی مرتبط با این دو بیشتری است و می‌توان از
تنوع موجود و سابی انتخاب زنی‌تیپی این بیوهای در
جهت اصلاح تجمع آهن و روی دانه ارکام در
برنامه‌های به‌نزارد مخصوصاً انتخاب والدین
مناسب استفاده نمود.

 Neighbor-Net

شکل 3- گروه‌بندی ارکام برنج با استفاده از نشانه‌گرها دریماهواره برای الگوریتم Neighbor-Net algorithm.

Figure 3- Grouping of rice cultivars using microsatellite markers according to Neighbor-Net algorithm.

Evaluation of Genetic Diversity and Population Structure of Rice Cultivars using Microsatellite Markers linked to iron and zinc

Abutalebi Sh.1, Fotokian M.H.2, Zeinalbedini M.3
1MSc Student of Agriculture Biotechnology, College of Agriculture, Shahed University, Tehran, Iran.
2Associate Professor, College of Agriculture, Shahed University, Tehran, Iran.
3Assistant Professor, Agriculture Biotechnology Research Institute of Iran, Karaj, Iran.

Abstract
Determine genetic diversity in rice genetic resources is the first step toward the development of rice breeding programs. In this study genetic diversity of fifty cultivars of rice were analyzed using forty microsatellite markers linked to iron and zinc loci. Molecular analysis results showed the number of observed alleles per locus markers with average of 5.27 was varied from 2 to 10. The polymorphic information content values of loci was varied from 0.24 (RM19675) to 0.83 (RM276, RM402), respectively. The average of polymorphic information contents was estimated 0.63. RM276 marker was showed the highest genetic diversity and Shannon Index. Cultivars were classified into two sub-population groups according to analysis of population structure including landraces as first group and improved and foreign cultivars as second group. Based on the analysis of molecular variance, intra-population variance was higher than inter-population variance and the minimum and maximum genetic distance was between improved and foreign cultivars and landraces and foreign cultivars, respectively. Based on the cluster analysis, landraces cultivars were separate group than other cultivars. The results of this research could be useful in breeding programs of grain iron and zinc and expanding the genetic bases of rice cultivars.

Keyword: cluster analysis, population structure analysis, Shannon Index, Polymorphic Information Content.