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Abstract Recent research is recognizing that multiple criteria

analysis should take account of the concepts of uncertainty

and risk. In some cases, precise determination of the exact

value of alternatives and weights of criteria is difficult.

Consequently, to deal with these potential problems, their

values are regarded as fuzzy and intervals. This paper pro-

poses an interval-valued fuzzy multiple criteria complex pro-

portional assessment (IVF-COPRAS) method that can reflect

both a subjective judgment and objective information in real-

life situations. In this method, the performance rating values

versus selected criteria as well as the weights of conflicting

criteria are linguistic variables represented by interval-valued

triangular fuzzy numbers. Moreover, performances of alterna-

tives against subjective criteria are described via linguistic

variables and then transformed into interval-valued triangular

fuzzy numbers. Finally, an application example for the robot

selection problem is given in this paper to show this decision-

making steps and the effectiveness of the proposed method in

manufacturing companies.
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1 Introduction

In the last decade, robots have been utilized in various ad-

vanced manufacturing systems for a wide range of applica-

tions. An industrial robot is regarded as a reprogrammable

multi-functional manipulator, designed to move materials,

parts, tools, or other devices by means of variable pro-

grammed motions, and to conduct different other tasks [1].

When amanufacturing companymakes a decision to purchase

a robot to perform a material-handling task, the evaluation and

selection have to be conducted among different models and

types by considering numerous conflicting specifications, in-

cluding man–machine interface, programming flexibility,

vendor’s service contract, load capacity, positioning accuracy,

purchase cost, etc.

In the literature, there are some studies that presented

models to solve robot selection problems. For instance,

Knott and Getto [2] designed a model to assess various robotic

systems in an uncertain environment, and potential alterna-

tives were assessed by calculating the total net present values

of cash flows of investment, labor components, and over-

heads. Agrawal et al. [3] applied the technique for order

preference by similarity to an ideal solution (TOPSIS) method

for the robot selection, but the subjective criteria were not

considered in this study. Liang andWang [4] presented a robot

selection algorithm by integrating the concepts of fuzzy set

theory and hierarchical structure analysis. The algorithm was

utilized to aggregate decision makers’ fuzzy evaluations for

the criteria weightings and to provide fuzzy indices. Goh [5]

used the analytic hierarchy process (AHP) method for the

robot selection.

Parkan and Wu [6] proposed decision-making and perfor-

mance measurement models with industrial applications to the

robot selection. Khouja and Kumar [7] applied options theory

and an investment assessment approach for selection of ro-

bots. Braglia and Petroni [8] performed an investment
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assessment by using the data envelopment analysis (DEA)

model for the robot selection. Layek and Resare [9] designed a

decision support system (DSS) according to analytical algo-

rithms in order to choose machining centers and robots simul-

taneously. Chu and Lin [10] discussed the limitations of the

Liang and Wang method [4]. They presented a TOPSIS meth-

od for robot selection in a fuzzy environment. Bhangale et al.

[11] stated a number of robot selection criteria and prioritized

the robots by using TOPSIS and graphical methods. Karsak

and Ahiska [12] presented a practical common-weight

decision-making approach using the DEA method by consid-

ering an improved discriminating power for the technology

selection. Rao and Padmanabhan [13] proposed an approach

based on digraph and matrix methods for the assessment of

industrial robots. A robot selection index was introduced that

prioritized robots for an industrial application. The digraph

was also presented in terms of the criteria of robot selection

and their relative importance. Chatterjee et al. [14] utilized two

compromise ranking (VlseKriterijumska Optimizacija I

Kompromisno Resenje, VIKOR) and outranking (elimination

and choice translating reality, ELECTRE) methods. They

compared their relative performance for an industrial

application.

In the fuzzy sets theory to cope with uncertainty, it is often

difficult for an expert or decision maker (DM) to exactly

quantify his or her opinion as a number in interval [0, 1].

Therefore, it is more suitable to represent this degree of

certainty by an interval. Sambuc [15] and Grattan [16] noted

that the presentation of a linguistic expression in the form of

fuzzy sets is not enough properly. Interval-valued fuzzy sets

were suggested for the first time by Gorzlczany [17] and

Turksen [18]. Also, Cornelis et al. [19] and Karnik and

Mendel [20] noted that the main reason for proposing this

new concept is the fact that in the linguistic modeling of a

phenomenon, the presentation of the linguistic expression in

the form of ordinary fuzzy sets is not clear enough. Wang and

Li [21] defined interval-valued fuzzy numbers and gave their

extended operations. Interval-valued fuzzy sets have been

widely used in real-world applications, for instance, Sambuc

[15] in thyrodian pathology, Gorzlczany [17] and Bustine [22]

in approximate reasoning, and Turksen [18, 23, 24] in

interval-valued logic and in preference modeling. Mustajoki

et al. [25] utilized intervals in the simple multi-attribute rating

technique (SMART) and the weighted methods. Halouani

et al. [26] proposed two new multi-criteria 2-tuple group

decision methods called preference ranking organization

method for enrichment evaluation multi-decision maker 2-

tuple-I and II (PROMETHEE-MD-2T-I and II). They integrat-

ed their procedure with both quantitative and qualitative in-

formation in an uncertain context. Vahdani et al. [27–29]

extended VlseKriterijumska Optimizacija I Kompromisno

Resenje (VIKOR), the elimination and choice translating re-

ality (ELECTRE), and TOPSIS methods based on interval-

valued fuzzy set for solving multiple criteria decision making

(MCDM) problems. Yao and Yu [30] utilized statistical data to

derive level interval-valued fuzzy numbers to represent un-

known alternative effectiveness scores.

The review of the literature indicates that the present-

ed models generally try to solve either the elimination

phase which provides a feasible set of alternative robots

or the ranking phase of the robot selection problem. The

literature survey illustrates that there is a need for a

decision-making method in terms of multiple conflicting

criteria that integrates the concepts of interval-valued

fuzzy sets and compromise programming for the selec-

tion problems to cope with uncertainty and risk issues,

and to fulfill the needs of the DMs. In this paper, the

proposed interval-valued fuzzy multiple criteria complex

proportional assessment (IVF-COPRAS) method aims to

fill this gap in the robot selection problem. The interval-

valued fuzzy numbers are utilized because of the lin-

guistic modeling of a phenomenon, where the presenta-

tion of the linguistic expression in the form of ordinary

fuzzy sets is not clear enough [27–29, 31, 32].

On the other hand, the COPRAS method under uncertainty

is taken into consideration in this paper among the well-

known multiple criteria analysis methods, such as AHP,

VIKOR, and TOPSIS. Regarding the AHP, in spite of its

popularity by increasing the number of criteria as well as

alternatives, the method requires a considerable amount of

time to complete the pair-wise comparison processes [33,

34]. Thus, it becomes impractical due to lengthy calculations.

The VIKOR method is sensitive to “v” value which stands for

weighting reference [35, 36]. It is difficult to find an exact

value for the weighting reference in the robot selection prob-

lem. Also, the TOPSISmethod is not efficient enough because

it develops two reference points; however, this method does

not consider the relative importance of the distances from

these points [37, 38]. Furthermore, the conventional

COPRAS method has been widely used in a variety of

decision-making problems, for instance, the fields of construc-

tionmanagement, propertymanagement, and economics, with

appropriate results in the recent years [39, 40].

The proposed IVF-COPRAS method assumes direct and

proportional dependence of the weight and utility degree of

investigated versions on a system of criteria adequately de-

scribing the alternatives and on values as well as weights of

the selected criteria. The proposed method contains a stepwise

evaluating procedure of alternatives in terms of significance

and utility degree in an interval-valued fuzzy environment.

The set of criteria is determined, and experts or DMs compute

their values and initial weights under uncertainty. The inter-

ested experts or DMs by considering their goals and the

existing capabilities can investigate and correct all the infor-

mation. In canonical MCDM or multiple criteria analysis

methods as well as canonical COPRAS method, the
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performance ratings and the weights of the conflicting criteria

are determined precisely. However, under many condi-

tions, crisp data are inadequate to model real-life situa-

tions since human judgments including preferences are

often vague and cannot estimate his/her preference with

an exact numerical value. A more realistic and practical

approach may be to utilize linguistic assessments instead

of numerical values, that is, to suppose that the ratings

and weights of the criteria in the problem are described

by means of linguistic variables. Hence, this paper pre-

sents an interval-valued fuzzy complex proportional as-

sessment approach which can reflect both subjective

judgment and objective information in real-life situa-

tions. In this method, the performance rating values as

well as the weights of criteria are linguistic variables

expressed as interval-valued triangular fuzzy numbers.

Furthermore, this paper appraises the performance of

potential alternatives against subjective criteria via lin-

guistic variables represented as interval-valued triangular

fuzzy numbers. Finally, for the purpose of illustrating

the applicability and suitability of the proposed method,

an application example from the literature is presented

for the robot selection problem.

The remaining of this paper is organized as follows: In

Section 2, we briefly introduce the original COPRASmethod.

Section 3 develops COPRAS method under an interval-

valued fuzzy environment to solve selection problems.

Section 4 investigates an illustrative example including an

application to select a robot among potential candidates.

Discussion of results is provided in Section 5. The paper is

concluded in Section 6.

2 Multiple criteria complex proportional assessment

(COPRAS) method

The MCDM or multiple criteria analysis provides an effective

framework for comparison based on the evaluation of

multiple conflicting criteria. The MCDM is one of the

fastest growing areas of operational research, as it is

often realized that many concrete problems can be rep-

resented by several criteria. It was described as the most

well-known branch of decision-making to solve selec-

tion problems [41–45]. The decision process of selecting

an appropriate alternative usually has to take many

factors into considerations, for instance, organizational

needs and goals, risks, benefits, limited resources, etc.

Several qualitative and quantitative criteria may affect

mutually when evaluating alternatives, which may make

the selection process complex and challenging. The

method of multiple criteria complex proportional assess-

ment (COPRAS) as one of the well-known MCDM

method was first introduced by Zavadskas and

Kaklauskas [46]. The method regards the performance

rating of each alternative with respect to several criteria

and the corresponding criteria weights. It chooses the

best alternative by considering both the positive-ideal

and the negative-ideal solutions. This well-known meth-

od has been applied to solve a wide range of decision

problems with remarkable results in the related literature

[39, 40]. It is a comprehensive evaluation approach that

tries to rank alternatives, described in terms of different

criteria. The procedure of the canonical method of com-

plex proportional evaluation consists of the following

steps [39, 46, 47]:

Step 1 Selecting the available set most important criteria

which describe alternatives.

Step 2 Preparing the decision-making matrix (X) for a

MCDM problem in which A1,A2,…,Am are m pos-

sible alternatives and C1,C2,…,Cn are n criteria.

X ¼

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋮ ⋮ ⋮ ⋮

xm1 xm2 ⋯ xmn

2
664

3
775 i ¼ 1; 2;…;m; j ¼ 1; 2;…; n:

ð1Þ

Step 3 Determining weights of the criteria qj.

Step 4 Normalizing the decision-making matrix X . The

normalized values of this matrix are calculated as

follows:

x�ij ¼
xij

X

i¼1

m

xij

i ¼ 1; 2;…;m; j ¼ 1; 2;…; n: ð2Þ

After this step, we have normalized decision-

making matrix as follows:

X
�

¼

x̄11 x̄12 ⋯ x̄1n

x̄21 x̄22 ⋯ x̄2n
⋮ ⋮ ⋮ ⋮

x̄m1 x̄m2 ⋯ x̄mn

2
6664

3
7775 i ¼ 1; 2;…;m; j ¼ 1; 2;…; n:

ð3Þ

Step 5 Calculating the weighted normalized decision matrix

bX . Theweighted normalized valuesbxij are calculated
by the following:

bxij ¼ x�ij⋅q j i ¼ 1; 2;…;m; j ¼ 1; 2;…; n: ð4Þ
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After this step, we have weighted normalized

decision-making matrix as follows:

X̂ ¼

x̂11 x̂12 ⋯ x̂1n
x̂21 x̂22 ⋯ x̂2n
⋮ ⋮ ⋮ ⋮

x̂m1 x̂m2 ⋯ x̂mn

2
664

3
775 i ¼ 1; 2;…;m; j ¼ 1; 2;…; n:

ð5Þ

Step 6 Calculating sums Pi of criteria values which larger

values are more preferable for each alternative as

follows:

Pi ¼
X

j¼1

k

bxij: ð6Þ

In Eq. (6), k is number of benefit criteria. It is

assumed that in the decision-makingmatrix, columns

first of all are placed benefit criteria and ones which

cost criteria are placed after.

Step 7 Calculating sums Ri of criteria values which smaller

values are more preferable for each alternative as

follows:

Ri ¼
X

j¼kþ1

n

bxij: ð7Þ

Step 8 Determining the minimum value of Ri.

Rmin ¼ min
i

Ri i ¼ 1; 2…;m ð8Þ

Step 9 Calculating the relative weight of each alternative Qi

by the following:

Qi ¼ Pi þ

Rmin

X

i¼1

m

Ri

Ri

X

i¼1

m
Rmin

Ri

: ð9Þ

Equation (8) can be written as follows:

Qi ¼ Pi þ

X

i¼1

m

Ri

Ri

X

i¼1

m
1

Ri

: ð10Þ

Step 10 Determining the priority of the alternative. The

greater significance (relative weight of alterna-

tive) Qi, the higher is the priority of the alter-

native. In the case of Qmax, the satisfaction

degree is the highest.

Step 11 Calculating the utility degree of each alternative:

N j ¼
Q j

Qmax

100%; ð11Þ

where Qj and Qmax are the significance of alternatives

obtained from Eq. (9).

3 Proposed interval-valued fuzzy COPRAS

(IVF-COPRAS) method

In fuzzy MCDM problems, performance rating values

and relative weights are often characterized by fuzzy

numbers. A fuzzy number is a convex fuzzy set, de-

fined by a given interval of real numbers, each with a

membership value between 0 and 1. Considering the

fact that, in some cases, determining precisely this

value is difficult, the membership value can be

expressed as an interval, consisting real numbers. In

this paper, performance rating values as well as criteria

weights are regarded as linguistic variables. The con-

cept of linguistic variable is very useful in dealing with

situations that are too complex or ill-defined to be

reasonably described in conventional quantitative ex-

pressions [48]. These linguistic variables can be con-

verted to interval-valued triangular fuzzy numbers as

provided in Tables 1 and 2.

Let eX ¼ exij
� �

m�n
be a fuzzy decision matrix for a MCDM

problem in which A1,A2,…,Am arem possible alternatives and

C1,C2,…,Cn are n criteria. So, the performance of alternative

Table 1 Definitions of linguistic variables for the ratings

Linguistic variables Interval-valued triangular fuzzy numbers

Very poor (VP) [(0,0);0;(1,1.5)]

Poor (P) [(0,0.5);1;(2.5,3.5)]

Moderately poor (MP) [(0,1.5);3;(4.5,5.5)]

Fair (F) [(2.5,3.5);5;(6.5,7.5)]

Moderately good (MG) [(4.5,5.5);7;(8,9.5)]

Good (G) [(5.5,7.5);9;(9.5,10)]

Very good (VG) [(8.5,9.5);10;(10,10)]
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Ai with respect to criterion Cj is denoted asexij .exij and ew j are

expressed in interval-valued triangular fuzzy numbers. It is

worth noting that the use of interval-valued numbers gives an

opportunity to experts or DMs to define lower and upper

bounds values as an interval for the decisionmatrix’s elements

and weights of criteria. Also, in a group decision-making

environment with K persons, the importance of the criteria

and the performance rating of alternatives versus each criteri-

on can be calculated by the following:

exij ¼
1

K
exij
1 þ ex

ij

2 þ…þexij
k

� �
ð12Þ

ewij ¼
1

K
ewij

1 þ ew
ij

2 þ…þ ewij
k

� �
ð13Þ

Equations (12) and (13) represent the average values of exij
and ewij denoted by experts, where (+) is the sum operator and

is applied to the interval-valued fuzzy numbers as defined in

Definition A.1 in Appendix. The output is also an interval-

valued fuzzy number. The concept of the proposed IVF-

COPRAS method is based on the significance and utility

degree of each alternative in the multiple criteria analysis

under uncertainty. Generally, the proposed method consists

of four main steps:

& First, calculation of each interval-valued fuzzy weighted

normalized decision matrix;

& Second, calculation of sums of maximizing interval-

valued fuzzy indexes and minimizing interval-valued

fuzzy indexes representing each alternative;

& Third, determination of interval-valued fuzzy significance

of each alternative based on positive and negative alterna-

tive characteristics; and

& Fourth, calculation of interval-valued fuzzy utility degree

of each alternative.

Now, the proposed approach to develop the COPRAS

method under an interval-valued fuzzy environment can be

presented as follows:

Step 1 Given exij ¼ x1ij; x2ij
� �

; x3ij; x4ij; x5ij
� �� �

, the normal-

ized performance rating can be calculated by:

enij ¼
x1ij

xþ5 j
;
x2ij

xþ5 j

 !
;
x3ij

xþ5 j
;

x4ij

xþ5 j
;
x5ij

xþ5 j

 !" #
; i

¼ 1;…;m; j∈Ωb ð14Þ

enij ¼
x−1 j

x5ij
;
x−1 j

x4ij

� 	
;
x−1 j

x3ij
;

x−1 j

x2ij
;
x−1 j

x1ij

� 	� �
; i

¼ 1;…;m; j∈Ωc ð15Þ

where

xþ5 j ¼ Max x5ij
i

; j∈Ωb

x−1 j ¼ Min x1ij
i

; j∈Ωc

whereΩb is associated with benefit criteria, andΩc is

associated with cost criteria. Hence, the normalized

matrix eN ¼ enij
� �

n�m
can be obtained. The above-

mentioned normalization method is to preserve the

property that the ranges of normalized interval num-

bers fall within [0,1].

Step 2 Determining the weighted normalized matrix.

Normalization transforms performance rating ma-

trix measured with different units, such as points,

ratio, and percentage, into weighted dimensionless

variables, allowing their direct comparison. The pur-

pose of this step is to receive dimensionless weighted

values of the decision matrix from the comparative

indexes. By considering the different importance of

each criterion, we can construct the weighted normal-

ized fuzzy decision matrix as follows:

eV ¼ evij
h i

n�m
ð16Þ

where

evij ¼ ew j � enij: ð17Þ

Table 2 Definitions of linguistic variables for the importance of each
criterion

Linguistic variables Interval-valued triangular fuzzy numbers

Very low (VL) [(0,0);0;(0.1,0.15)]

Low (L) [(0,0.05);0.1;(0.25,0.35)]

Medium low (ML) [(0,0.15);0.3;(0.45,0.55)]

Medium (M) [(0.25,0.35);0.5;(0.65,0.75)]

Medium high (MH) [(0.45,0.55);0.7;(0.8,0.95)]

High (H) [(0.55,0.75);0.9;(0.95,1)]

Very high (VH) [(0.85,0.95);1;(1,1)]
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According to Definition A.1 in Appendix, the

multiply operator can be applied as follows:

evi j ¼ w1 j � n1i j;w2 j�n2i j
� �

;w3 j � n3i j; w4 j � n4i j;w5 j � n5i j
� �� �

:

ð18Þ

Step 3 Calculating sums ePi of criteria values. The

larger for the positive values (maximizing

values) is more preferable and better satisfied

for each alternative. Sums are calculated ac-

cording to the following formula:

ePi ¼
X

j¼1

k

evij ¼
X

j¼1

k

v1i j; v2ij
� �

; v3i j; v4i j; v5i j
� �� �

: ð19Þ

In Eq. (6), k is number of benefit criteria. In fact,

the value of weight of the selected benefit criterion

can be proportionally distributed among all potential

alternative versions and can be aggregated according

to their values evij .

Step 4 Calculating sums eRi of criteria values. The smaller

for the negative values (minimizing values) is more

preferable for each alternative. Sums are calculated

according to the following formula:

eRi ¼
X

j¼kþ1

n

evij ¼
X

j¼kþ1

n

v1i j; v2i j
� �

; v3i j; v4i j; v5i j
� �� �

: ð20Þ

In fact, the value of weight of the selected

cost criterion can be proportionally distributed

among all potential alternative versions and can

be aggregated according to their values evij .

Step 5 Determining the minimum value of eRi with respect to

Definition A.2 in Appendix.

eRmin ¼ min
i

eRi i ¼ 1; 2…;m ð21Þ

Step 6 Calculating interval-valued fuzzy relative weight of

each alternative eQi as follows:

Q̃i ¼ P̃i þ

X

i¼1

m

R̃i

R̃i

X

i¼1

m
1

R̃i

¼ P1i;P2ið Þ;P3i; P4i;P5ið Þ½ �

þ

X

i¼1

m

R1i;R2ið Þ;R3i; R4i;R5ið Þ½ �

R1i;R2ið Þ;R3i; R4i;R5ið Þ½ �
X

i¼1

m
1

R1i;R2ið Þ;R3i; R4i;R5ið Þ½ �

¼ Q1i;Q2ið Þ;Q3i; Q4i;Q5ið Þ½ � ð22Þ

The first term of eQi increases for higher positive

criteria ePi , while the second term of eQi increases

with lower negative criteria eRi . The significance

(priority) of each alternative can be determined on

the basis of describing positive and negative criteria

that characterize the potential alternative in the multi-

criteria analysis. Hence, a higher value of eQi can

correspond to a more suitable alternative.

Step 7 Determining the priority of the alternative. The great-

er significance (interval-valued fuzzy relative weight

of alternative) eQi with respect to Definition A.2 in

Appendix, the higher is the priority of the alternative.

In the case of eQmax , the satisfaction degree is the

highest.

The analysis of this step makes it possible to

denote that it may be easily applied to evaluate po-

tential alternatives and choose the most efficient of

themwhile being fully aware of the physical meaning

of the decision-making process. Furthermore, it pro-

vides a reduced criterion eQi formulated under an

interval-valued fuzzy environment which is directly

proportional to the relative effect of the compared

criteria values evij and their weights on the computa-

tional results. In fact, significance eQi of each alter-

native states the degree of satisfaction of demands

and aims pursued by the interested experts or DMs. It

means that the greater the eQi is, the higher efficiency

of the potential alternative.

Step 8 Calculating the utility degree of each alternative.

N j ¼
h eQ j


 �

eQmax


 �100% ð23Þ

where h eQ j


 �
and h eQmax


 �
are the significance of

alternatives obtained from Eq. (22) and Definition

A.2 in Appendix.

The final step is to determine the best alter-

native that satisfies different criteria in the mul-

tiple criteria analysis. By increasing or decreas-

ing the priority of the potential alternative, its

degree of utility also increases or decreases.

The degree of the utility is determined by com-

paring each potential alternative with the most

efficient one. The best alternative (candidate)

that satisfies several conflicting criteria present-

ed by the highest degree of utility Nj equaling

100 %. All utility values associated with the

potential alternatives can range from 0 to

100 %, between the worst and best alternative

out of those under consideration. This step can

properly facilitate a visual evaluation of the

potential alternative’s efficiency.
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4 Application of the proposed IVF-COPRAS method

in solving the robot selection problem

The illustrative example from Liang and Wang [4] is used to

show the feasibility and suitability of the proposed IVF-

COPRAS method. Assume that a manufacturing company

requires a robot to perform a material-handling task. Three

robots, R1,R2, and R3, are chosen for further evaluation.

A committee of four decisionmakers,D1,D2,D3, andD4, is

formed to conduct the evaluation and to select the most

suitable robot. The robot selection criteria and the importance

weights of the criteria are shown in Tables 3 and 4, respec-

tively. The ratings of three subjective criteria are shown in

Table 5. The data of objective criteria is shown in Table 6.

The normalized decision-making matrix and the weighted

normalized decision-making matrix are calculated. The re-

spective results have been presented in Tables 7 and 8 (step 1).

Sums ePi , eRi , and minimum value of eRi are calculated

using Eqs. (19 and 20) (steps 2 to 4). Then, interval-valued

fuzzy relative weight eQi and utility degree Ni are calculated

for each alternative using Eqs. (22 and 23). The results have

been presented in Table 9 (steps 5 to 7).

According to Table 9, the ranking order of the three robots

is R3, R2, and R1. Hence, the best selection is robot 3.

5 Discussion

In this section, we utilize the interval-valued fuzzy TOPSIS

method presented by Ashtiani et al. [31] for the purpose of

ranking the robots (potential alternatives) and comparing the

results in the robot selection problem. By virtue of evaluation

of criteria with respect to each other and the evaluation of

alternatives with respect to criteria, the computational results

are provided in Table 10 for the robot selection problem. By

considering Tables 9 and 10, it is observed that results of the

proposed IVF-COPRAS method and the recent interval-

valued fuzzy TOPSIS (IVF-TOPSIS) method by Ashtiani

et al. [31] are similar. Both interval-valued fuzzy decision-

making methods provide similar priorities for the robot selec-

tion problem, in which the first rank (R3) is the same. Both

decision methods take low calculation time, particularly when

we utilize a spreadsheet software. They are based on the utility

theory and can solve the real-life decision-making problems

involving any number of qualitative and quantitative criteria

as well as any number of alternatives.

In sum, the main contributions and benefits of the proposed

IVF-COPRAS method in comparison with other fuzzy multi-

ple criteria analysis methods are as follows: (1) A relative

importance of each alternative as well as a utility degree of

each alternative is introduced under an interval-valued fuzzy

environment to obtain the best alternative’ rank among poten-

tial alternatives and to indicate, as a percentage, the extent to

which one alternative is better or worse than other alternatives

regarded for the comparison; (2) the proposed method enables

the experts or DMs to provide a reduced criterion determining

the overall efficiency of each alternative under an interval-

Table 3 Robot selection criteria

Subjective criteria Objective criteria

Man–machine interface (C1) Load capacity (C4)

Programming flexibility (C2) Positioning accuracy (C5)

Vendor’s service contract (C3) Purchase cost (C6)

Table 4 Weights of criteria and the average weights

Criteria Decision makers Average weights

D1 D2 D3 D4

C1 H VH VH H [(0.7,0.85);0.95;(0.975,1)]

C2 VH H VH M [(0.625,0.75);0.85;(0.9,0.9375)]

C3 M L M L [(0.125,0.2);0.3;(0.45,0.55)]

C4 VH VH H VH [(0.775,0.9);0.975;(0.9875,1)]

C5 VH H H H [(0.625,0.8);0.925;(0.9625,1)]

C6 M M M L [(0.1875,0.275);0.4;(0.55,0.65)]

Table 5 Ratings of robots under subjective criteria and the average
ratings

Criteria Robots Decision makers Average ratings

D1 D2 D3 D4

C1 R1 F F G VG [(4.75,6);7.25;(8.125,8.75)]

R2 F G F F [(3.25,4.5);6;(7.25,8.125)]

R3 G F VG G [(5.5,7);8.25;(8.875,9.375)]

C2 R1 G P G F [(3.375,4.75);6;(7,7.75)]

R2 VG G VG F [(6.25,7.5);8.5;(9,9.375)]

R3 G F VG G [(5.5,7);8.25;(8.875,9.375)]

C3 R1 F F G F [(3.25,4.5);6;(7.25,8.125)]

R2 G F VG G [(5.5,7);8.25;(8.875,9.375)]

R3 G G G VG [(6.25,8);9.25;(9.625,10)]

Table 6 Values under objective criteria

Robots Load
capacity (C4)

Positioning
accuracy±in (C5)

Purchase cost
($×1,000) (C6)

R1 [(48.5,49);50;
(51,52)]

[(0.11,0.12);0.13;
(0.14,0.15)]

[(72.5,73);73.5;
(74,74.5)]

R2 [(44,44.5);45;
(45.5,46.5)]

[(0.15,0.16);0.17;
(0.18,0.19)]

[(69,69.5);70;
(71,72)]

R3 [(43.5,44);45;
(46,47.5)]

[(0.16,0.17);0.18;
(0.19,0.20)]

[(67.5,68);68.5;
(69,70)]
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valued fuzzy environment. The generalized criterion can be

directly proportional to interval-valued fuzzy relative effect of

the values and interval-valued fuzzy weights of criteria on the

efficiency of each alternative; (3) the proposed method has the

ability to determine a complete ranking of alternatives under

an interval-valued fuzzy environment by indicating the posi-

tion of each alternative, and the ability to deal with criteria of

both positive and negative influences and those of quantitative

and qualitative natures; and (4) ease of use and understanding

of the proposed method under uncertainty so that the interest-

ed experts or DMs can easily adopt the method through the

group decision-making process.

Furthermore, the results illustrate the applicability and suit-

ability of the proposed IVF-COPRAS method for the evalua-

tion and selection problem. This method can be regarded as an

effective subjective and objective integrated decision-making

aid.

Although this paper has applied the IVF-COPRAS method

to the robot selection problem, the proposed method can be

utilized for making an appropriate decision in any other fields

of engineering and management problems, such as material

selection problem, project selection problem, and supplier

selection problem, according to the above-mentioned advan-

tages and benefits. Consequently, the interval-valued fuzzy

decision matrix data (criteria values) can be changed and

computed for other fields. The weighting (relative impor-

tance) of the criteria can be adapted and provided with the

requirements of the concerned top managers and depending

on their situations. Moreover, the number of potential alterna-

tives (candidates) for consideration can be small or large

depending on the experts or DMs’ needs to be evaluated and

ranked. However, combining the proposed IVF-COPRAS

method with the well-known weighting method, such as

AHP or linear programming technique for multi-dimensional

analysis of preference (LINMAP), for the conflicting criteria

can lead to improve and enhance the process of decision

making in the real-life situations. This topic can be recom-

mended as the future research in the foregoing fields.

Table 7 Normalized decision matrix

Robots C1 C2 C3 C4 C5 C6

R1 [(0.506,0.64);0.773;
(0.866,0.933)]

[(0.36,0.506);0.64;
(0.746,0.826)]

[(0.325,0.45);0.6;
(0.725,0.812)]

[(0.93,0.94);0.96;
(0.95,1)]

[(0.55,0.6);0.65;
(0.7,0.75)]

[(0.9,0.912);0.918;
(0.92,0.93)]

R2 [(0.346,0.48);0.64;
(0.773,0.866)]

[(0.66,0.8);0.906;
(0.96,1)]

[(0.55,0.7);0.825;
(0.887,0.937)]

[(0.84,0.85);0.86;
(0.87,0.89)]

[(0.75,0.8);0.85;
(0.9,0.95)]

[(0.93,0.95);0.96;
(0.971,0.978)]

R3 [(0.586,0.746);0.88;
(0.946,1)]

[(0.586,0.746);0.88;
(0.946,1)]

[(0.625,0.8);0.925;
(0.962,1)]

[(0.83,0.84);0.86;
(0.88,0.91)]

[(0.8,0.85);0.9;
(0.95,1)]

[(0.96,0.97);0.98;
(0.99,1)]

Table 8 Weighted normalized decision matrix

Robots C1 C2 C3 C4 C5 C6

R1 [(0.35,0.54);0.73;
(0.84,0.93)]

[(0.22,0.37);0.54;
(0.67,0.77)]

[(0.04,0.07);0.18;
(0.33,0.44)]

[(0.72,0.73);0.93;
(0.96,1)]

[(0.34,0.40);0.6;
(0.67,0.75)]

[(0.16,0.17);0.36;
(0.59,0.60)]

R2 [(0.24,0.41);0.61;
(0.75,0.86)]

[(0.41,0.56);0.77;
(0.86,0.93)]

[(0.06,0.11);0.24;
(0.45,0.51)]

[(0.65,0.66);0.83;
(0.86,0.89)]

[(0.46,0.53);0.78;
(0.86,0.95)]

[(0.17,0.18);0.38;
(0.62,0.63)]

R3 [(0.41,0.61);0.83;
(0.92,1)]

[(0.36,0.55);0.74;
(0.85,0.93)]

[(0.07;0.11);0.27;
(0.50,0.55)]

[(0.64,0.66);0.83;
(0.86,0.91)]

[(0.5,0.56);0.83;
(0.91,1)]

[(0.18,0.183);0.39;
(0.63,0.65)]

Table 9 Values of eQi and Ni

Robots eQi
h eQi


 �
Ni Rank

R1 [(1.73,2.18);3.39;(5.82,6.25)] 22.78 90.15 3

R2 [(1.89,2.32);3.62;(6.07,6.43)] 23.97 94.85 2

R3 [(2.04,2.55);3.90;(6.26,6.60)] 25.27 100 1

Table 10 Preference order ranking of interval-valued fuzzy TOPSIS
method presented by Ashtiani et al. [31]

Robots [Di1
+ ,Di2

+ ] [Di2
− ,Di1

− ] RCi
* Rank

R1 [1.2408, 1.3951] [2.5413, 3.2079] 0.6792 2

R2 [1.2365, 1.8974] [2.312, 3.1021] 0.6320 3

R3 [1.2751, 1.6579] [2.9151, 3.3414] 0.6821 1
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6 Conclusion

To increase product quality as well as productivity, the robot

selection has been regarded as a critical issue for many

manufacturing companies. To solve the robot selection prob-

lem and take uncertainties into account, we can utilize multi-

ple criteria decision-making (MCDM) approach in an

interval-valued fuzzy environment, which can be widely ap-

plied in a variety of engineering and management fields. This

paper proposed a decision-making method (IVF-COPRAS)

based on the complex proportional assessment for solving the

robot selection problems. In this method, the performance

rating values as well as the weights of criteria were linguistic

variables expressed as interval-valued triangular fuzzy num-

bers. Moreover, we rated the performance of alternatives

against subjective criteria via linguistic variables expressed

as interval-valued triangular fuzzy numbers. Proposed

interval-valued fuzzy complex proportional assessment meth-

od is effective and easy to understand. This method constantly

enhanced and extended the theory and concept of fuzzy com-

promise programming based on positive and negative-ideal

solutions as well as the fuzzy utility degree. It introduced as a

new approach under uncertainty for solving the selection and

evaluation problems. Although the presented IVF-COPRAS

method was applied for the robot selection, it can be applied

for making a best decision in any other fields of engineering

and management, particularly in other manufacturing

decision-making problems.
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Appendix

An interval-valued fuzzy set eA on ℜ is given by eA¼Δ

x; μ
Ã

L xð Þ;μ
Ã

U xð Þ
h i
n o

, x∈ℜ, when μ
Ã

L xð Þ;μÃ U xð Þ∈ 0; 1½ �

and μ
Ã

L xð Þ≤μ
Ã

U xð Þ∀x∈ℜ are denoted as eA ¼ eAL
; eAU

h i

[17]. This means that the grade of membership of x belongs to

the interval μ
Ã

L xð Þ;μ
Ã

U xð Þ
h i

, the least grade of membership at

x isμ
Ã

L xð Þ , and the greatest grade ofmembership at x isμ
Ã

U xð Þ

[49]. Let

μeA L xð Þ ¼

λ x−pð Þ
.

q−pð Þ ; p≤x≤q;

λ r−xð Þ
.

r−qð Þ ; q≤x≤r;

0 ; otherwise

8
>><
>>:

:

Then, eAL
¼ p; q; r;λð Þ . Let

μeA
U xð Þ ¼

ρ x−eð Þ
.

q−eð Þ ; e≤x≤q;

ρ h−xð Þ
.

h−qð Þ ; q≤x≤h;

0 ; otherwise

8
>><
>>:

:

Then, eAU
¼ e; q; h; ρð Þ . Here , 0 < λ ≤ ρ ≤ 1, e < p <

q < r < h . T h u s , w e h a v e i - v f u z z y s e t eA¼Δ

x; μ
Ã

L xð Þ;μ
Ã

U xð Þ
h i
n o

; x∈ℜ . We d e n o t e eA ¼

p; q; r;λð Þ; e; q; h; ρð Þ½ � ¼ eAL
; eAU

h i
. eA is called a level

(λ,ρ) i-v fuzzy numbers as shown in Fig. 1. Let

F IV λ; ρð Þ ¼ p; q; r;λð Þ; e; q; h; ρð Þ½ �
���∀e < p < q < r < h

n o
; 0 < λ≤ρ≤1

or

FIV λ; ρð Þ ¼ p; r;λð Þ; q; e; h; ρð Þ½ �
���∀e < p < q < r < h

n o
; 0 < λ≤ρ≤1 :

Given two interval-valued fuzzy numbers eA ¼ eAL
; eAU

h i

and eB ¼ eBL
; eBU

h i
, according to [49, 50], we have:

De f i n i t i o n A . 1 I f ∘ ∈ ( + ,− , × , ÷ ) , t h e n eA∘eB ¼

eAL
∘eB

L

; eAU∘eBU

� �
, for a positive

non- fuzzy number (v ) , v∘eA ¼

v∘eAL
; v∘eA

U
� �

.

1

x
e p q r h0

ρ

λ

Fig. 1 Level (λ, ρ) i-v fuzzy
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Definition A.2 Let eA and eB be two interval-valued fuzzy

numbers. eA and eB can then be represented

as follows:

Ã ¼ a1; a2ð Þa3; a4; a5ð Þ½ � and

B̃ ¼ b1; b2ð Þ; b3; b4; b5ð Þ½ �Let

h Ã

 �

¼
a1 þ a2 þ 2a3 þ a4 þ a5

6
;

h B̃

 �

¼
b1 þ b2 þ 2b3 þ b4 þ b5

6
;

We say Ã > B̃ if h Ã

 �

> h B̃

 �

:
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